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Preface

It is a great pleasure and honor to present the proceedings of ACA 2018, the 12th
Conference on Advanced Computer Architecture. ACA is sponsored by the China
Computer Federation (CCF) and it is the flagship conference of the CCF Technical
Committee on Computer Architecture (TCArch). It has been one of the most important
academic conferences in the field of computer architecture in China since 1995.

The 2018 edition of ACA was held in the scenic area of Yingkou, a port city of the
Bohai Sea. The theme this year was “Intelligent Architecture: From the Cloud to the
Edge.” ACA 2018 created a forum for academic researchers and industry practitioners
in China to share their insights on the next-generation computing systems. We con-
tinued the trend of making ACA an inclusive and interactive event that features invited
keynotes, top paper presentation, poster showcase, and design competition, etc.

This year, we received over 120 paper registrations. Finally, there were 80 suc-
cessful submissions. Each submission was reviewed by three Program Committee
(PC) members on average. In all, 13 papers were rejected immediately in the first round
of review and 67 papers were sent out for a second round of review. Only the papers
with an average score of � 3 (borderline) were considered for final inclusion, and
almost all accepted papers had positive reviews or at least one review with a score of 5
(accept) or higher. Finally, the PC decided to accept 47 submissions, including 17
papers in English and 30 in Chinese. We asked the authors of all the accepted papers to
submit a revised version based on the review reports.

This program would have not been possible without the efforts of the PC, the
external reviewers, and the authors. We would like to express our gratitude to all the
authors who submitted their papers. We would like to convey our deepest and sincerest
appreciation for all the hard work and dedication of our PC members and external
reviewers. We also gratefully acknowledge the kind support from our general chair,
Prof. Yong Dou, organization chair, Prof. Kuanjiu Zhou, and our Steering Committee.
Our thanks also go to the China Computer Federation (CCF), Technical Committee on
Computer Architecture of CCF, Dalian University of Technology, the City of Yinkou,
Xilinx, Baidu, and all the other institutes that kindly helped us. Finally, we greatly
appreciate the steady support provided by Springer.

August 2018 Chao Li
Junjie Wu
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A Scalable FPGA Accelerator for
Convolutional Neural Networks

Ke Xu1,2, Xiaoyun Wang1,2, Shihang Fu1,2, and Dong Wang1,2(B)

1 Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
2 Beijing Key Laboratory of Advanced Information Science and Network Technology,

Beijing 100044, China
{17112071,16120304,17125155,wangdong}@bjtu.edu.cn

Abstract. Convolution Neural Networks (CNN) have achieved undis-
puted success in many practical applications, such as image classification,
face detection, and speech recognition. As we all know, FPGA-based
CNN prediction is more efficient than GPU-based schemes, especially
in terms of power consumption. In addition, OpenCL-based high-level
synthesis tools in FPGA is widely utilized due to the fast verification
and implementation flows. In this paper, we propose an FPGA accel-
erator with a scalable architecture of deeply pipelined OpenCL kernels.
The design is verified by implementing three representative large-scale
CNNs, AlexNet, VGG-16 and ResNet-50 on Altera OpenCL DE5-Net
FPGA board. Our design has achieved a peak performance of 141 GOPS
for convolution operation, and 103 GOPS for the entire VGG-16 network
that performs ImageNet classification on DE5-Net board.

Keywords: FPGA · OpenCL · Convolution Neural Networks
Optimization

1 Introduction

Convolutional Neural Network (CNN) is a widely-regarded algorithm in the field
of artificial intelligence. It has achieved great success in image classification [1],
object detection [2], and speech recognition [3]. In the past decade, CNN has sig-
nificantly improved the accuracy and performance of image classification. This
is mainly due to the continuous improvement of data sets and the successive
enhancement of the neural network structure. Being compute-intensive, GPUs
are now widely used to train CNN. However, the GPUs with high power dissipa-
tions at the deployment level of the CNNs is not the best choice. FPGA based
hardware accelerators with provide massive processing elements, reconfigurable
interconnections and lower power dissipation are naturally suitable to implement
neural network circuits.

The traditional FPGA development method uses hardware description lan-
guage (HDL). The work of [7,8] propose efficient CNN accelerators on embed-
ded FPGA platforms. However, traditional register-transfer-level (RTL) design
c© Springer Nature Singapore Pte Ltd. 2018
C. Li and J. Wu (Eds.): ACA 2018, CCIS 908, pp. 3–14, 2018.
https://doi.org/10.1007/978-981-13-2423-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2423-9_1&domain=pdf
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flows takes a lot of time to simulate and compile before actually running hard-
ware accelerators. With the development of FPGA high-level synthesis tool
(HLS), high-level programming language (C/C++) is used to replace low-level
HDL, which improves the speed of FPGA implementation and verification flows.
Greatly reducing the development cycle, to design FPGA has brought great con-
venience. In recent yeas, the use of HLS to design CNN architecture has contin-
ued to emerge. The work of [9] using the Vivado-HLS tool on a Xilinx VC707
FPGA board. However, only convolution layers are implemented on AlexNet [1].
In [10], author present a systematic methodology for maximizing the through-
put of an FPGA-based accelerator. In this work, an entire CNN model is pro-
posed consisting of all CNN layers: convolution, normalization, pooling and clas-
sification layers. The scalable of accelerator architecture only use like AlexNet
and VGG [4]. The feedforward neural networks with shortcut connections like
ResNet [5] dose not work. The main contribution of this work are:

(1) Propose a FPGA accelerator with a scalable architecture of deeply pipelined
OpenCL kernels;

(2) The design is verified by implementing three representative large-scale CNNs,
AlexNet, VGG-16 and ResNet-50;

(3) The design space of the proposed architecture was fully explored on Stratix-
V A7 FPGA.

2 Background

2.1 Classic Convolution Neural Network

AlexNet. AlexNet was able to achieve record breaking object recognition
results on the ImageNet challenge in 2012. It consisted of eight layers in total,
5 convolutional and 3 fully connected, as depicted in Fig. 1. The 3-dimensional
(3-D) convolution operation can be defined by

Do(fo, y, x) =
Cl∑

fi=1

K−1∑

ky=0

K−1∑

kx=0

Wl(fo, fi, ky, kx) · Di(fi, y + ky, x + kx) (1)

where Di(fi, y, x) and Do(fo, y, x) denote the neurons at position (x, y) in the
input feature map fi and output feature map fo, respectively. Wl(fo, fi, y, x) rep-
resents the corresponding weights in the l-th layer that gets convolved with fi.
The size of the convolution filters is K ×K, while the total number of input fea-
ture maps is Cl. In addition to this, AlexNet considered the use of the ReLU non-
linearity instead of the saturating nonlinearites, such as sigmoids; Using dropout
in training and Local Response Normalization (LRN) to reduce the problem of
overfitting.
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Fig. 1. AlexNet architecture. Figure reproduced from [1]

VGG. VGG achieves its depth by simply stacking more layers while following
the standard practices introduced with AlexNet. The size of the convolution
kernel is more regular. AlexNet use 11×11, 5×5 and 3×3 filters, but VGG only
use 3× 3 filters in the entire network. Notably, while using smaller filters, VGG
required far more filters per layer. The amount of calculations and parameters
of VGG is much larger than AlexNet.

ResNet. Deeper neural networks are more difficult to train, so in [5], author
proposed residual learning framework reducing the vanishing gradient problem
to ease the training of networks. This residual learning is mainly use of shortcut
connections, illustrated in Fig. 2, that connect components of different layers
with an identity mapping [6]. In particular, ResNet is built such that each layer
learns an incremental transformation, F (x), on top of the input, x, according to

H(x) = F (x) − x (2)

instead of learning the transformation H(x) directly as done in other standard
CNN architectures.

Fig. 2. Schematic of residual learning. Figure reproduced from [5]

2.2 OpenCL Framework on FPGA

OpenCL is an open, cross-platform parallel programming language that can
be used in both CPU, DSP, GPU and FPGA developments. Recently, FPGA



www.manaraa.com

6 K. Xu et al.

vendors such as Xilinx and Intel have released OpenCL SDK for programming
FPGAs. The Intel OpenCL environment which can be a mixture of C, C++,
and OpenCL, provides a complete CPU/GPU-like development experience and
run-time experience on a CPU/FPGA platform, including a complete software
workflow spanning multiple target devices and x86 emulation with cycle-accurate
FPGA hardware models and cycle-accurate FPGA hardware.

3 Architecture Design and Optimization

3.1 Accelerator Architecture

As shown in Fig. 3, our FPGA design based OpenCL framework consists of a
group of OpenCL kernels that are cascaded by using Altera’s OpenCL extension
Channels. Two data mover kernels, namely MemRD and MemWR, transfer fea-
ture map and weight data from/to the global memory feeding other kernel with
high throughput data streams. The cascaded kernels form a deep computation
pipeline that can implement a serial of basic CNNs operations without the need
of storing interlayer data back to global memory. It significantly reduces the
bandwidth requirement compared to the work of [10]. The Convolution kernel is
designed to implement both the convolution layer and the fully connected layer
which are the most compute-intensive operations in CNNs. The Pooling kernel
is controlled by the synchronization signal of the MemWR kernel. When the
synchronization signal set one, the Pooling kernel operation is performed. This
technique is mainly used to achieve overlap between two kernels. The Batch-
Norm kernel using in [5] loads mean, variance, α and β from global memory
and performs the normalization directly on the output data streams of the Con-
volution kernel. The Local Response Normalization(LRN) kernel using in [1]
fetches data from global memory and performs normalization on the feature
map of neighboring neurons in deep direction. The Eltwise kernel mapping Elt-
wise Layer using in [5] loads data from global momory and adds each elements
mainly using shortcut connections.

This architecture has the following advances:

(1) The cascaded and overlaped kernels form a deep pipeline architecture.
(2) Using a single hardware kernel to implement both the convolution and fully

connected layers.
(3) Scalable hardware structure which implementation many classic CNNs oper-

ations, such as LRN kernel to AlexNet, BatchNorm kernel and Eltwise kernel
to ResNet.

Convolution Kernel. A single work-item kernel with parallel convolution data
paths is designed to implement both the function of the convolution and FC
layers. In this paper, we propose to flatten the 3-D convolution operation into
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Fig. 3. The top-level architecture of CNN accelerator.

a 1-D convolution operation and integrate it with the full-connect operation as
follow:

Do(fo) =
Cl×K×K∑

f ′
i=1

Wl(fo, f ′
i) · Di(f ′

i) (3)

In this way, data vectorization and parallel CU structure are both explored
in the design. Vectorized input features Di and weights Wl are streamed by
multiple Channels. A design parameter VEC SIZE determines the degree of
data vectorization and controls the input throughput. Another design variable
parameter to accelerator the convolution operation CU NUM, represents the
parallel factor of weight and reuse factor of data. Due to efficient pipelined by
the OpenCL compiler, We propose an efficient convolution pipeline structure
consisted of a multiplier-adder tree with a delayed buffer as in Fig. 4.

Fig. 4. The hardware architecture of the convolution kernel.
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Data Mover Kernel. Two multi-model single work-item kernels are designed
to fetch/store data from/to the global memory for the computation pipelines.
MemRD kernel detailed schemes in [11] can fetch data from global memory
to convolution mode or FC mode. We propose design parameter FT NUM to
determine the size of local memory, which further influences the reuse of input
data. MemWR kernel is mainly used to receive the output of convolution ker-
nel through the channel and arrange it into the storage structure required for
the next convolution or pooling operation. For the convolution mode, the data
received from the channel is arranged to have a depth of CU NUM, and MemWR
kernel need to divide the depth into VEC SIZE copies and return it to global
memory. The pooling mode simply transfer the data received from the channel
and directly put back to global memory. In the pooling mode, the MemWR ker-
nel also needs to pipe the synchronization signal to the pooling kernel at the right
time for them can overlap work. Note all memory operations should be commit-
ted before sending token to the pooling kernel. Detailed MemWR schemes are
illustrated in Fig. 5.

Fig. 5. The hardware architecture of the memWR kernel.

Fig. 6. The hardware architecture of the maxpool kernel.

Pooling Kernel. A shift-register-based hardware structure is proposed for the
pooling kernel as shown in Fig. 6. The kernel first fetch the synchronization
signal from the blocked channel, only waiting for the synchronization signal
from blocked channel to come, the pooling kernel can start working. When the
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synchronization signal comes, the pooling kernel read data from global memory
to shift register. In the process of data transfer, if the time point of pooling
is reached, data will be extracted from the shift register to the pooling logic.
Similarly, we designed a parameter PT NUM for adjusting the size of the local
memory in pooling kernel to exploiting input data reuse. In the pooling strategy,
the first line is processed first, then the second line is compared with the first line,
and so on. The final result of the pooling calculation is stored in the ping-pong
buffer. During the pooling calculation, the result of the last calculation is also
divided into VEC SIZE and returned to global memory for the next convolution
calculation. This process is similar to MemWR.

Other Kernel. Besides the most compute-intensive convolution and fully con-
nected kernel, we also designed some common opencl kernels, such as LRN,
BatchNorm, Eltwise for the scalability and integrity of the CNN accelerator’s
overall design. In this architecture, you can choose the basic units used in the
network to piece together to implement different network structures. For exam-
ple, implementation AlexNet just choose convolution kernel, pooling kernel and
LRN kernel. Therefore, this scalable architecture can process the complete CNN
forword computation flow with little involvement of host CPU.

Table 1. Operations in AlexNet model

Index Layer d x d y d z w x w y w n w m GOPS

1 Conv1 227 227 3 11 11 3 96 0.281

2 Conv2 55 55 96 5 5 48 256 0.448

3 Conv3 27 27 256 3 3 256 384 0.299

4 Conv4 13 13 384 3 3 192 384 0.224

5 Conv5 13 13 384 3 3 192 256 0.032

6 FC1 6 6 256 6 6 256 4096 0.075

7 FC2 1 1 4096 1 1 4096 4096 0.034

8 FC3 1 1 4096 1 1 4096 1024 0.008

Output 1 1 1024 Total Ops 1.40

4 Design Space Exploration

In this section, we present an analytical performance model and resource utiliza-
tion model to choose the best combination of the design parameters (VEC SIZE,
CU NUM, FT NUM, PT NUM ) that maximizes the performance of the CNN
accelerator, while still being able to fit in the limited FPGA resources.
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4.1 Performance Model

Convolution and Fully Connected Time. The execution time of convolution
and fully connected layer-i is modeled as follow:

Convolution or FC Runtimei =
No.of Convolution or FC Opsi

VEC SIZE× CU NUM× Frequency
(4)

Table 1 gives a operations summary of each layer in AlexNet model. Note that
d x, d y and d z represents the size of the output feature map from the previous
layer, not the input size of the current layer. In 3.1 the convolution and fully
connected operation have parallelism of two levels, one is the degree of parallelism
VEC SIZE based on the depth dimension of the input feature map, and the other
is the degree of parallelism CU NUM based on the number of convolution filters.
So the speedup ratio for the convolution kernel is VEC SIZE × CU NUM. The
execution times of AlexNet, VGG-16 and ResNet-50 on CU NUM are shown in
Fig. 7.

Other Layers Time. Due to the idea of pipeline and overlap in the overall
hardware design, the execution time of other kernels can be basically ignored
relative to convolution and fully connected operations.

Fig. 7. Execution time empirical models for CU NUM.

Memory Bandwidth. In order to reduce the pressure of external memory
bandwidth, we use 8-bit fixed point calculations and propose a sliding-window-
based data buffering scheme. Using fixed-point instead of floating-point calcula-
tions can reduce hardware synthesis costs and memory bandwidth requirements.
Fortunately, research shows that using 8-bit fixed-point numbers instead of full-
precision floating-point numbers is less than 1% loss in top 1/5 accuratacy for
AlexNet/VGG predictions. As shown in Fig. 8, this sliding-window-based data
buffering scheme use in MemRD kernel and maxpool kernel to cache data that
was fetched from global memory. The filter stride S of this filter window is usu-
ally smaller than the filter size K. Therefore, a large portion of data can be
reused during the convolution and maxpool computation. To exploiting data
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reuse, the MemRD kernel design a FT NUM parameter and maxpool kernel
design a PT NUM parameter. These kernel fetches a window of data that cov-
ers the area of FT NUM or PT NUM of filters each time, and caches the data
in the on-chip buffers or shift register.

Fig. 8. The hardware architecture of the convolution kernel.

Fig. 9. Resource utilization empirical models for CU NUM on VGG-16.

4.2 Resource Utilization Model

In this subsection, we analyze resource utilization model on DE5-Net board.
As discussed in 3.1, two design parameters VEC SIZE, CU NUM are used to
control the hardware cost of the CNN accelerator. Therefore, we mainly con-
sider the impact of the following two parameters in resource utilization model.
Figure 9 shows the model with parameter CU NUM on VGG-16. As the parame-
ter CU NUM gradually increases, both logic elements model and DSP utilization
model present a trend of linear increase. However, the on-chip memory utilization
model shows small discrepancy due to the complexity of load/store units.
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5 Experimental Results

In this section, we present the experimental results to validate the scalable of
this CNN accelerator by implementation three large-scale CNN models: AlexNet,
VGG-16 and ResNet-50 on DE5-Net platform.

5.1 Experimental Setup

We use DE5-Net FPGA development board from Altera and compare with
DE5a-Net listed its specification in Table 2. The OpenCL kernel codes are com-
piled using Altera OpenCL SDK 16.1, and the Quartus 16.1 is used as the FPGA
implementation tool. The host machine is equipped with an Intel i7-5930K CPU
and 64 GB memories. The data of images are first loaded from hard disks to
the host programs, and then sended to the FPGA accelerators to perform CNN
forword computations.

Table 2. Comparision of FPGA accelerator boards.

Specification DE5-Net DE5a-Net

FPGA Stratix-V GXA7 Arria-10 GX1150

Logic elements 622 k 1150 k

DSP blocks 256 1518

M20K RAMs 2560 2560

5.2 Results and Discussion

In this subsection, we first list the best parameter configuration on different net-
works. Then, we show the benchmark of our CNN accelerator. Finally, we dis-
cuss the scalability of this hardware architecture. As discussed in 4, four design
parameters VEC SIZE, CU NUM, FT NUM, PT NUM are used to control the
hardware cost and throughput of the FPGA accelerator. Therefore, design space
exploration can be quantitatively performed by implementing the accelerator
with different parameter configuration. The final design variables for three net-
works optimized on the DE5-Net board are shown in Table 3.

In Table 4, we summarize the resource utilization, execution time and per-
formance of different networks on the best parameters. We can see that different
networks have different parameters and achieve different performance on same
FPGA board. To prove how fast this accelerator can accelerate CNN computa-
tions, we also compare with CPU by using the Caffe deep learning framework.
The execution time for AlexNet, VGG-16 and ResNet-50 is 189 ms, 1547 ms
and 1238 ms, respectively. We can see that using FPGA-based accelerator can
achieve more than 10 times faster on average in implementation CNN-based
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Table 3. Optimized parameters.

AlexNet VGG-16 ResNet-50

VEC SIZE 8 8 16

CU NUM 48 32 16

FT NUM 7 7 7

PT NUM 2 4 4

Table 4. Summary of the resource utilization, execution time and throughput on
different networks.

AlexNet VGG-16 ResNet-50

Logic elements 491.3 k 368.5 k 532.6 K

DSP blocks 236 170 256

M20K RAM 2252 1133 1537

Frequency 197.9 MHz 219.7 MHz 223.6 MHz

Execution time 18.08 ms 355.92 ms 102.97 ms

Throughput 77.5 GOPS 103 GOPS 75.7 GOPS

image classification applications. In future works, we will explore sparse convo-
lution algorithms and using Winograd transformations to reduce the number of
computations and to improve the performance of this accelerator.

6 Conclusion

In this work, we implemented a scalable FPGA accelerator for convolutional neu-
ral networks using OpenCL framework. An efficient and scalable hardware archi-
tecture with deep pipelined kernels was presented. We proposed and explored
four design parameters for hardware costs and bandwidth limited, and imple-
mented three large-scale CNNs, AlexNet, VGG-16 and ResNet-50 on DE5-Net
FPGA board.

Acknowledgment. This work was supported by NNSF of China Grants NO.
61574013, 61532005.
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Abstract. Deep convolutional neural networks (DNNs) achieve state-
of-the-art accuracy but at the cost of massive computation and memory
operations. Although highly-parallel devices effectively meet the require-
ments of computation, energy efficiency is still a tough nut.

In this paper, we present two novel computation sequences,
NHWCfine and NHWCcoarse, for the DNN accelerators. Then we com-
bine two computation sequences with appropriate data layouts. The
proposed modes enable continuous memory access patterns and reduce
the number of memory accesses, which is achieved by leveraging and
transforming the local data reuse of weights and feature maps in high-
dimensional convolutions.

Experiments with various convolutional layers show that the proposed
modes made up of computing sequences and data layouts are more energy
efficient than the baseline mode on various networks. The reduction for
total energy consumption is up to 4.10×. The reduction for the off-chip
memory access latency is up to 5.11×.

Keywords: Deep learning · Convolutional neural network
Acceleration · Memory efficiency · Data layout

1 Introduction

Deep Neural Networks (DNNs) are Machine Learning (ML) methods that can
learn a generic but effective representation of an input space from large amount
of data. They extract high level features using previous learned models from raw
data to infer the final data distribution.

Over the past decade, DNNs, especially deep convolutional neural networks,
have gained a huge development due to the outstanding experimental achieve-
ments of multiple related fields including computer vision [14], speech recognition
[9], and natural language processing [8]. In many specific situations, DNNs used
in some domains are now able to beyond human in both accuracy and speed.

The success of DNNs can be attributed to three main reasons: the availabil-
ity of large-scale data sets, the developments of deep structures and training
c© Springer Nature Singapore Pte Ltd. 2018
C. Li and J. Wu (Eds.): ACA 2018, CCIS 908, pp. 15–29, 2018.
https://doi.org/10.1007/978-981-13-2423-9_2
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algorithms, and the utilization of highly parallel computational resources. All of
the three factors show the demand of high computation throughput and mem-
ory bandwidth resulting in the developments of general-purpose and special-
ized accelerators based on highly parallel platform such as GPUs [6,7], FPGAs
[12,21], and ASICs [4,6].

After the chasing in accuracy, almost all modern accelerators, especially those
hold deep networks, pay more attention on the reduction of power consumption
[18]. To achieve better energy efficiency, eliminating unnecessary off-chip memory
access and optimizing memory access patterns are effective methods.

Previous studies proposed methods to mitigate the bottleneck of memory
access, such as dataflow [2,5], compression [10,13], data quantification [12]. These
works gain outstanding performances, but some of them biased towards the
adjustments of data formats and processing orders at on-chip or off-chip ends but
fail to consider them both simultaneously. The interactions between computation
sequences and data layouts have not been considered.

Based on the comparisons between different combinations of computation
sequences and data layouts, we propose two optimizations of computation
sequences and collocate favorable data layouts in convolutional layers to col-
laboratively improve the energy efficiency.

To enhance energy efficiency, previous works like [5] focus on the distribution
of all types of data movement, such as input data reuse or partial sum accumu-
lation, at different levels of the memory hierarchy. Based on the fact that the
data size and the number of off-chip accesses of input feature maps and weights
is different in the convolutional layers, our computation sequences that focus
on the transformation and balance among different data reuse forms can deliver
significant energy saving.

The main contributions of our work include:

– A framework that can model multiple accelerator architectures and evaluate
various combinations of computation sequences and data layouts in different
convolutional layers.

– Two novel sequences of the convolutional computation called NHWCfine

and NHWCcoarse and their corresponding data layouts to maximize mem-
ory access coalescence and provide sequencial memeory acceess pattern in
order to optimize performance and energy efficieny of the memory system.

The experiment result shows that our two computation modes, NHWCfine

and NHWCcoarse, gain higher efficiency in various convolutional layers compared
to the basic convolution, with reduction of off-chip latency up to 5.11× and
4.95×, respectively. The two modes also achieve up to 4.10× and 3.98× reduction
in total energy consumption of a single convolutional layer. When the networks
goes deeper, the reduction ratio will increase accordingly.

The rest of the paper is organized as follows. Section 2 gives the background
of CNNs and introduces the related work. Section 3 gives the motivation of
this work. We will introduce proposed data layout and optimizations in Sect. 4.
Sections 5 and 6 provide a series of experiments to evaluate the memory efficiency
of different modes, and this paper concludes in Sect. 7.



www.manaraa.com

Memory Bandwidth and Energy Efficiency Optimization of DNN 17

2 Background and Related Works

2.1 Convolutional Neural Networks

In machine learning, convolution neural networks, inspired by animal neurons
organization of local sensitivity and direction selection, are members of multi-
layer feed-forward artificial neural networks. The working principle of CNNs is
to extract the local features with special data distributions from high-resolution
feature maps and combine them directly into more abstract low-resolution fea-
ture maps. Feature extraction and feature mapping operations are completed
through two types of layers: convolutional and pooling layers. The last few lay-
ers are fully-connected (FC) classifiers that combine all local features to produce
the final results.

A convolutional layer extracts local features from input feature maps (ifmaps)
via trained filters, and then combines them into the more abstract intermediate
activation called output feature maps (ofmaps). Each element of feature maps
can be represented into three dimensions: height (H), width (W ), and channel
index (C). When batch size is more than one to leverage parallelism among
different images, there is another dimension N that should be concerned, which
represents the different set of ifmaps in their contexts. The computation in the
convolutional layers is defined as

ofmaps [z] [u] [x] [y]

=
Ci−1∑

k=0

Fh−1∑

i=0

Fw−1∑

j=0

ifmaps [z] [k] [Sx + i] [Sy + j]

×weights [u] [k] [i] [j] + bias [u]
0 ≤ z ≤ N, 0 ≤ u ≤ Co, 0 ≤ x ≤ Ho, 0 ≤ y ≤ Wo (1)

N is the value of batch size. Ci and Co are the channel number of ifmaps and
ofmaps. Ho and Wo are the height and width of ofmaps. Fh and Fw represent
the size of convolution filters. The dimensions of both filters and fmaps are 4D.
It means that each filter or ifmap is a 3D structure consisting of 2D planes.
In Summary, for an output channel, a 3D ifmap is processed by a 3D filter in
convolutional layers. Figure 1 shows the main computation process.

To differentiate data layouts in 4D arrays of fmaps and filters, we will use
following notation in this paper: NCHW for fmaps and CoCiFhFw for filters.
There are also two subtypes of NCHW data layout for ifmaps and ofmaps:
NCiHiWi and NCoHoWo. Data layouts can represent the levels of distance
between every two data in the same dimension. For example, in the NCHW
data layout, the elements along the lowest dimension W are stored in succession,
which continuous elements along the H dimension have a stride of W , and H*W
for C dimension, and so on.

2.2 Related Works

Many works are proposed to improve memory utilization in various fields, such
as compressions, zero-skip computations [1], data layouts, dataflows, and so on.
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Fig. 1. Computation of a CONV/FC layer. Hi and Wi are the height and width of
ifmaps. Other notations are explained behind Eq. 1

DRAM accesses can be reduced by compression techniques such as pruning
and quantization [13]. Note that [10] compress a 2D filter to a 1D row for storage
at the cost of slower convergence rate, which benefits the optimizations below.
Zero-skip computation in [1] ignores the zero bits in activations to eliminate
the useless MACs and reduce R/W operations of psums. However, this tech-
nique introduces more energy and area problems. Dataflows can be divided into
two aspects: intra-layer and inter-layer dataflows. [5] presents various intra-layer
dataflow and proposes a dataflow leveraging almost all the data reuses, which
is called row-stationary. It receives outstanding memory efficiency. [2] proposes
an inter-layer dataflow applied to continuous convolutional layers to reduce the
R/W operations of intermediate activations. Data layout, the part that we focus
on, can serialize the DRAM accesses to leverage bandwidth and coalescence bet-
ter. In the view of parallelism, [16] discusses the impacts of all kinds of basic
data layouts on GPUs. But, besides neglecting other underlying structures, the
relationships between data layouts and computation sequences have also been
overlooked.

3 Motivation

3.1 Limited On-Chip Storage Resources

Our basic accelerator’s architecture is a design of FPGA-based CNN accelerator
for LeNet called Laius [17].

LeNet [15] is one of the most traditional neural networks towards light-scale
data comparing with advanced networks like VGG. Laius is an FPGA-based
accelerator for LeNet.

Benefiting from ping-pong optimization, 8-bit weight precision and weight
compression, Laius’s inter-layer buffers can save all the output data from the pre-
vious layer and provide input to the next layer. If the network model is changed
to AlexNet, the data size and the depth of the network will both increase. And
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then there will be some problems. First, on-chip storage is not enough anymore,
and we have to leverage data reuse better to reduce the number of off-chip mem-
ory access and save energy. Second, with the deeper going of network structures,
there are more convolutional layers with small fmaps and filters. Third, the num-
ber of psums produced by parallel contexts is too large to make psums stay in
on-chip buffers.

3.2 Data Movement

In most widely used CNNs, such as LeNet [15], AlexNet [14] and VGG [20],
convolutional layers account for over 90% of the overall operations and produce
a large amount of data movement [5]. Thus, convolutional layers are important
for CNNs to gain high performance in throughput and energy efficiency.

There are two issues limiting throughput and energy efficiency of convolution.
First, a MAC operation that creates read requests of ifmaps and weights stored
in off-chip DRAM results in requirements of high bandwidth and energy con-
sumption. Second, a significant amount of partial sums (psums) are produced
by limited parallel contexts simultaneously, which introduce additional read or
write pressure and energy of access if not accumulated within an acceptable
time.

To deal with the first issue, we should leverage different types of data reuse:

– Sliding reuse. The value of S (stride) is always less than that of Fh and
Fw in convolutional layers to slow down the evolution roughening and to gain
more information from neighbors. This characteristic makes small amount of
ifmaps’ pixels become shared across many MAC kernels. Each pixel in ifmaps
can be used Fh × Fw (with padding) times in a 2D fmap with 2 directions.

– Ifmap reuse
– Intra-image filter reuse. According to Eq. 1, each 2D filter can be identified

by a couple of an input channel and an output channel. Therefore, convolu-
tional operations of an input channel use only one 2D filter to generate psums
of the same output channel. This kind of reuse doesn’t exist in FC layers.

– Inter-image filter reuse. Each filter can be further reused across the batch
of N ifmaps.

The second issue can be handled by scheduling the order of operations to
make the psums get final values as soon as possible.

Nevertheless, maximum 2D data reuse and immediate psum reduction cannot
be realized completely at the same time. Pixels of a specified output channel is
products of a group of Ci 2D ifmap kernels and a group of Ci 2D filters in the
same size. All filters in a group must be taken into computation if we want
to get the output pixel immediately. But we will read this group of 2D filters
in sequence again to compute the value of the next pixel in the same output
channel, which is conflicting with the aim of maximum data reuse in a 2D view.
As we can see, the reason why these two issues cannot be solved simultaneously
is mainly about the independence of each channel.
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Fig. 2. The number of DRAM accesses of various buffer size. The 5 bars in each cluster
represent the 5 CONV layers of AlexNet. With various size of the on-chip buffers, we
crawl the output requests of the buffer and record the number of off-chip accesses.

The number of DRAM accesses is an essential factor that directly influences
the performance and energy efficiency of a convolutional layer. We analyze this
metric’s value with its three components, ifmaps/weights/psums, and observe
the proportion of each component. As shown in Fig. 2, we find that accessing
ifmap pixels is the most significant impact on the total number of accesses in
each layer. Failing to leverage access coalescence and ifmap data reuse with
limited buffer size makes a large number of repetitive ifmap accesses. When a
buffer cannot keep a whole 2D ifmap plane, the two-direction sliding reuse of
a 2D ifmap plane can always produce repetitive accesses requests in the second
direction. Therefore, some methods are needed to convert redundant accesses
of ifmap pixels into weights to keep balance and make buffer always hold a 3D
filter.

4 Data Layout Optimization

4.1 Computation and Data Layout

When the buffer size is not enough to keep the sum of all the pixels of an
input channel, all psums of an output channel and a 2D filter, ifmap pixels are
repeatedly read by sliding reuse in an HW ifmap plane. According to Eq. 1, we
can observe that different heights and widths between filters and ifmaps lead
to the two-direction sliding reuse in convolutional layers, which creates a long
stride to the sliding reuse in the second dimension.

Therefore, among dimensions N/H/W/C, we try to find a dimension with
the same length owned by both ifmaps and weights to apply single-direction
sliding on a 2D plane. Then Ci is found, and we expect to read pixels along Ci

dimension first in a specific WC planes. In these planes, kernels will slide along
dimension W. To gain a continuous DRAM access sequence, data values along
dimension C (Ci/Co) are supposed to store close to each other in the memory.
We change data layouts to NHWC for fmaps based on this single-direction
sliding computation mode.
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For ofmaps, however, the R/W requests to two adjacent output pixels will
experience a long stride of Co if the data layout is modified to NHoWoCo.
Fortunately, instead of adding transpose operations, this issue can be solved
when we introduce parallel processing to convolutional computation. Details
will be discussed in Sect. 4.5.

/∗NHWC coarse CONV∗/
f o r (u=0;u<Co ; u++)
f o r ( g=0;g<Ci ; g=g+tm)
f o r ( x=0;x<Hi ; x++)
// vary f i l t e r s to a plane
f o r ( i =0; i<Fh ; i=i+S)
f o r ( y=0;y<Wo; y++)
f o r ( j =0; j<Fw; j++)
f o r ( k=g ; k<min(Ci , g+tm ) ;

k++)
i f ( ( ( x−i )/S)>=0

&&((x−i )/S)<Ho)
{
t=input [ x ] [ y∗S+j ] [ k ]
∗weight [ u ] [ i ] [ j ] [ k ] ;

output [ ( x−i )/S ] [ y ] [ u]=
output [ ( x−i )/S ] [ y ] [ u]+ t ;

}

/∗NHWC fine CONV∗/
f o r (u=0; u<Co ; u++)
f o r ( g=0; g<Ci ; g=g+tm)
f o r ( x=0; x<Hi ; x++)
f o r ( y=0; y<Wo; y++)
// vary f i l t e r s −a ke rne l
f o r ( i =0; i<Fh ; i=i+S)
f o r ( j =0; j<Fw; j++)
f o r ( k=g ; k<min(Ci , g+tm ) ;

k++)
i f ( ( ( x−i )/S)>=0

&&((x−i )/S)<Ho)
{
t=input [ x ] [ y∗S+j ] [ k ]
∗weight [ u ] [ i ] [ j ] [ k ] ;

output [ ( x−i )/S ] [ y ] [ u]=
output [ ( x−i )/S ] [ y ] [ u]+ t ;

}

Fig. 3. Kernel code of NHWCcoarse(left) and NHWCfine (right) computation process
without other opt methods. Notaion g is the number of groups divided along C dimen-
sion.

4.2 NHWCcoarse : A Coarse-grained Optimization of Computation
Sequence

If we just change the data layout, there will be a stride along the Ci dimension,
which can break the continuity of the access patterns. Other data of the block
may be used after a long time resulting in many redundant operations.

We propose a convolution computation sequence that converts sliding reuse
to intra-image weights reuse. For a specific output channel, each ifmap plane can
just be read once and complete all of its operations with a low requirement of
storage sources.

As shown in Fig. 3, we will modify computation sequence to maximize the
data reuse of ifmap pixels. We first read a WC plane and the corresponding 3D
filter to do MAC operations. For each read operation of 2D FwC filters, this
sequence prefers to compute whole WC input plane through the one-direction
sliding operations. Then, this WC input plane will be computed with the sub-
sequent 2D filters corresponding to the same output channel. We can only read
a WC plane once, if there are sufficient on-chip storage resources.
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After we change the loop sequence to fit the new data layout NHWC, the 2D
convolutional kernels for the same output pixel will be linked closely. However,
different from the traditional sequence computing with FhFw ifmap kernels, our
new sequence compute with larger WC planes, which brings pressure to on-chip
buffers. In other words, due to its long distance before using the same ifmap
kernel again with a different 2D filter, this version may perform worse when the
free capacity of buffers is not enough to hold a 2D WC ifmap plane. In this
situation, the kernels read before might have been replaced and will be asked to
read again.

4.3 NHWCfine : A Fine-grained Optimization of Computation
Sequence

With the computation sequence NHWCcoarse, expanding of both the overlapping
parts of ifmaps and the granularity of filters Ci times highly increase the pressure
of on-chip buffers. So we need to change the computation sequences further to
apply in a fine granularity and balance them.

As shown in Fig. 3, we first read a 2D fmap kernel of the WC plane and
the corresponding 3D filter to do MAC operations. Instead of WC plane in
NHWCcoarse, the 2D kernel will participate in MAC operations Fh times with
Fh 2D filters in ascending order of their indexes when S = 1, and output pixels
will be located in descending order along H dimension. For example, with an
assumption that Fh = Fw = 3 and S = 1, there will be three 2D filters matching
with a single 2D fmap kernel whose index along H dimension is assumed to be
x. The first 2D filter will compute with the kernel to produce a psum located in
the current output pixel(x). The second will produce a new psum located in the
last output pixel(x-1), and the third will compute for the pixel before last(x-2).

Through this way, we convert the sliding reuse along a direction to inter-
image 3D weights reuse, which further reduces the sensitivity of ifmap access
times to small buffer size.

4.4 Segmentation

Unfortunately, the length of Ci becomes larger as going deeper along the network,
which results in the increasing size of the 2D WC kernel mentioned above. The
pressure of buffer is significantly getting larger due to this size increasing. To
handle this issue, we divide the 2D WC kernel into some groups along dimension
C. The peculiarity that no sliding reuse exist along dimension C makes the
segment easy to achieve. But the number of input channels per group should be
selected carefully.

As shown in Fig. 4, we find that the point where the segment presents a good
performance is related to the ratio of block size to data precision. Therefore,
four channels for each group will minimize the access times without redundant
R/W operations in NHWC data layout.
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Fig. 4. DRAM accesses of various numbers of channels per group in CONV2 of LeNet.
The groups are equally divided along Ci dimension. With various size of the on-chip
buffers as shown in legend, we crawl the output requests of the buffer and record the
number of off-chip accesses. A block contains four addressed values in this figure.

4.5 Parallelization

We know that there are three intra-image independent dimensions could be
paralleled (Co, Ho, and Wo) from Polyhedral model [22]. Inter-image dimension
N , which indicates batch size, is also a good choice.

We prefer to select Co as the first choice of parallelization for three reasons.
First, in the view of maximizing data reuse, the parallelism partition in Co

dimension is easy and efficient. For parallelism partition in Co dimension, each
context will use a same 3D ifmap. The ifmap for these contexts can be read
only once all through. Second, in consideration of data size, the contribution of
sharing a 3D ifmap, especially for our max-ifmap-reuse optimizations, is much
higher than that of sharing a 3D filter in the same reuse granularity. Finally,
as for the NHWC layout, the adjacent elements along C dimension can be
accessed serially and coalesced, which benefits the reduction of access times and
the improvement of memory access patterns.

5 Experiment Setup

5.1 Benchmark and Baseline

As shown in Table 1, we use three widely used networks, LeNet, AlexNet, and
VGG, to evaluate the proposed optimization methods. These three networks
cover a wide range of network size and memory-efficiency demand rank. Table 1
presents the configurations for different types of convolutional layers selected
from the three networks. These layers with different configurations will be used
in evaluation among three modes.

– The base mode is the traditional convolution, as shown in Eq. 1, with NCHW
data layout, which is regarded as a basic control mode.
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Table 1. The CNNs and their layers used in our experiments.

Layer Ci Ho/Wo Fh/Fw Co S

LeNet CONV1 3 24 5 20 1

LeNet CONV2 20 8 5 50 1

AlexNet CONV1 3 55 11 96 4

AlexNet CONV2 96 27 5 256 1

AlexNet CONV3 256 13 3 384 1

VGG CONV1 3 224 3 64 1

VGG CONV2 64 112 3 128 1

VGG CONV3 128 56 3 256 1

– NHWC1 mode consists of NHWCcoarse convolutional computation
sequence and NHWC layout.

– NHWC2 mode consists of NHWCfine convolutional computation sequence
and NHWC layout.

We apply these three modes to the convolutional layers in Table 1 and com-
pare the performance and energy efficiency by four metrics: DRAM access times,
latency, and energy consumption. To fit the fact of limited storage resources, We
also perform the sensitivity test to buffer size among these four metrics.

Fig. 5. Top-level structures of CNN accelerators. (a) Unified buffer: uses a unified buffer
to make different data on chip compete resources. (b) Split buffer: divides weight buffers
out.

5.2 Experiment Framework

Two top-level structures for experiments are illustrated in Fig. 5. On-chip buffers
represent the total storage resources on chip including global buffer, FIFO reg-
isters, and register files in PEs. There are two modes of on-chip buffer configu-
ration, unified buffer and split buffer, in our experimental structures. A unified
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buffer can store all types of data. It improves the resource utilization but might
introduce more conflicts and redundant replacements. To reduce the redundant
accesses of weights, we split global buffer into fmap buffer and weight buffer to
hold fmap pixels and 3D filters respectively.

The computation of PE is implemented by the simulator based on Laius
inference engine to output the behaviors of convolutional operations. The buffers
are implemented through a cache mechanism. For the structure with a unified
buffer, we feed all the output requests of inference engine into a buffer. And
for the structure with split buffers, we feed fmap and weight requests into cor-
responding buffers respectively. The size of buffers is recorded in total value.
We modify DRAM simulator DRAMSim2 [19] to implement and simulated the
DRAM module. We use the DRAM configuration of 1.5 ns per DRAM cycle and
16 parallel devices with 4-bit width each.

6 Experiment Results

We simulate the two novel modes and compare their performance with the base
mode under same but various buffer size and processing parallelism constraints.
To save space, We just show the results of partial representative layers of the
networks shown in Table 1.

6.1 The Number of Off-Chip DRAM Accesses

DRAM accesses are supposed to make a significant impact on the energy con-
sumption since their energy cost is significantly higher than on-chip data move-
ments.

Fig. 6. DRAM accesses of various unified buffer size in CONV layers: (a) CONV2 of
LeNet, (b) CONV2 of AlexNet, (c) CONV1 of VGG.

Unified buffer. Figure 6 shows the number of DRAM accesses in different unified
buffer size. From the comparisons in the same layer, we can find three features.
First, the accesses of ifmap are in the majority among the three modes, and
NHWC2 mode can efficiently reduce the number of them except for few cases
due to some unexpected replacements in small buffers. Second, NHWC2 mode
performs worse than other modes when the buffer size is too small to persistently
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hold a 3D filter. The reduction of ifmap accesses is covered by the increase
of weight accesses. Third, NHWC1 mode relieves the situations described in
the second point. It reduces the replacements of weights introduced by limited
capacity, which pays the price of increasing ifmap accesses.

Fig. 7. DRAM accesses of various split buffer size in CONV layers: (a) CONV2 of
LeNet, (b) CONV2 of AlexNet, (c) CONV3 of AlexNet, (d) CONV1 of VGG, (e)
CONV2 of VGG, (f) CONV3 of VGG.

Split buffer. We split a unified buffer into a fmap buffer and a weight buffer
to make sure that a 3D filter cannot be replaced until all its operations for the
specified image have been finished. Among the layers shown in Fig. 7, NHWCfine

(NHWC2 mode) always introduces less off-chip accesses (reduce up to 3.59× in
VGG) mainly due to its maximized utilization of ifmaps. NHWCcoarse (NHWC1
mode) does worse than the base mode sometimes due to its coarse-grained ifmap
reuse. The effects become more significant as the scale of data and the pressure
of buffers grow larger, which meets the trend of CNNs development.

6.2 Total Latency of Off-Chip DRAM Accesses

We record the total number of DRAM cycles spent in the period from receiving
the first request to finishing the last R/W operation of various convolutional
layers. The latency is the sum of many parts such as cycle time among row
address strobe (RAS), column address strobe (CAS), precharge, and refresh
commands.

As shown in Fig. 8, the NWHC2 mode can always achieve less latency than
basic mode with ratios from 1.02× to 3.31× for AlexNet and from 1.07× to
5.11× for VGG, which are expected to grow higher with larger data size.
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Fig. 8. Total DRAM latency of various split buffer size in CONV layers: (a) CONV2
of AlexNet, (b) CONV3 of AlexNet, (c) CONV1 of VGG, (d) CONV2 of VGG.

Fig. 9. Total energy consumption of various split buffer size in CONV: (a) CONV2 of
AlexNet, (b) CONV3 of AlexNet, (c) CONV1 of VGG, (d) CONV2 of VGG.
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6.3 Energy Consumption

Figure 9 provides the total DRAM energy consumption of the three modes in
different convolutional layers with split buffers. NHWC2 mode is always in lower
energy consumption, especially in convolutional layers of VGG, comparing with
base mode (up to 4.10× reduction). NHWC1 mode gets bad results in small
buffer size due to its large number of redundant ifmap accesses. The results
indicate that a fine-grained C-first computation mode is more suitable and energy
efficient for the structure with limited split buffers.

7 Conclusions and Future Works

To make effective use of limited on-chip storage resources and reduce off-chip
energy consumption, this work presents two convolutional modes that combine
computation sequences (NHWCfine and NHWCcoarse) with their suitable data
layouts NHWC. These two modes maximize input data reuse, especially the
reuse of input feature maps, and minimize read/write operations of psum accu-
mulation.

We use various convolutional layers of three networks, LeNet and AlexNet
and VGG, as benchmarks. Compared with the base mode of traditional con-
volution and NCHW layout, our two novel modes, especially NHWC2 mode,
still get good performance with limited buffers and achieve low DRAM latency
(up to 5.11× reduction) with low energy consumption(up to 4.10× reduction).
The reduction is expected to be more significant with larger data size.
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Abstract. Deep learning is one of the hottest research directions in the field of
artificial intelligence. It has achieved results which subvert these of traditional
methods. However, the demand for computing ability of hardware platform is
also increasing. The academia and industry mainly use heterogeneous GPUs to
accelerating computation. ARM is relatively more open than GPUs. The pur-
pose of this paper is to study the performance and related acceleration tech-
niques of ThunderX high-performance many-core ARM chips under large-scale
inference tasks. In order to study the computational performance of the target
platform objectively, several deep models are adapted for acceleration. Through
the selection of computational libraries, adjustment of parallel strategies,
application of various performance optimization techniques, we have excavated
the computing ability of many-core ARM platforms deeply. The final experi-
mental results show that the performance of single-chip ThunderX is equivalent
to that of the i7 7700 K chip, and the overall performance of dual-chip can reach
1.77 times that of the latter. In terms of energy efficiency, the former is inferior
to the latter. Stronger cooling system or bad power management may lead to
more power consumption. Overall, high-performance ARM chips can be
deployed in the cloud to complete large-scale deep learning inference tasks
which requiring high throughput.

Keywords: Parallel acceleration � Deep learning inference � Many-core ARM

1 Introduction

The research boom of deep learning can be traced back to 2012. AlexNet [1] appeared
in the ImageNet competition, achieving high classification accuracy, greatly surpassing
the traditional methods and gaining the attention of researchers around the world. After
that, the depth method not only developed rapidly in the field of computer vision, but
also extended to a larger range of machine perception, including speech recognition,
natural language understanding, voice recognition, and so on.

In order to improve the perception of the algorithm, researchers tend to widen and
deepen the network model, such as from AlexNet to GoogLeNet [2]. While the
algorithm is optimized, the demand for computing ability is also increasing. Especially
in the end-to-cloud architecture, the cloud has to undertake large-scale training and
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inference tasks at the same time. It must have sufficient computing ability to achieve the
desired throughput rate.

Using heterogeneous GPUs to accelerate deep neural network [3] can achieve
higher energy efficiency than simply relying on traditional x86 CPUs. In this archi-
tecture, the computational load is shifted to high-performance GPU card or cluster.
The CPU is responsible for distributing computing tasks and controlling data transfer.
The entire ecology of GPU heterogeneous acceleration has been very perfect. However,
due to the lack of competition in high-performance GPU manufacturing, users need to
bear higher hardware costs.

ARM is also entering the field of high-performance computing. CAVM released
ThunderX series ARM chips, focusing on data center and cloud applications. This
article aims to study the performance of this chip under large-scale deep learning
inference tasks. First of all, it is necessary to grasp the hardware features. Then
combine it with the features of the deep learning algorithm to fully exploit its com-
puting capabilities. Lastly, ARM is compared with mainstream high-performance x86
CPUs, to judge its prospects in the field of high-performance computing.

There is already a large amount of work on the ARM platform performing inference
tasks. In 2017, Tencent opened the Ncnn [4] deep learning inference framework that
optimized for mobile platform. Taking into account the limited hardware resources of
mobile platforms, developers have implemented elaborate memory management and
data structure design. In addition, ARM NEON assembly-level optimization is also
implemented. Ncnn mainly supports acceleration for convolutional neural network. In
addition, most of its optimization are developed for the mobile platforms, making it
difficult to exploit the computing ability of many-core ARM platforms.

Jetson TX2 is an embedded platform for artificial intelligence launched by NVI-
DIA. Onboard computing resources are a Pascal GPU with 256 CUDA cores and a 4-
core ARM A57 chip. The collaborative heterogeneous computing of GPU and ARM
can complete small-scale inference tasks rapidly [5]. However, if only use the 4-core
ARM chip, the performance is not as good as the C6678 DSP chip [6].

The above research status shows that the research on deep learning inference
acceleration of many-core server-class ARM platforms is insufficient. This article
hopes to do some exploratory work in this area.

2 The Many-Core ARM

ARM company is one of the leaders in microprocessor technology and has introduced a
series of microprocessor IP cores for different application scenarios. Introduced in
2012, ARMv8 is the new platform for the enterprise market and is the first architecture
supporting 64-bit instruction sets. The main features of the ARMv7 architecture are
retained or further expanded in the ARMv8 architecture, such as TrustZone security
technology, virtualization technology, and NEON SIMD technology.
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Cavium is the leading provider of multi-core MIPS and ARM processors on the
world. The latest ThunderX series ARM processors are developed by Cavium for the
HPC market. Many technical specifications are at the leading level in ARM
manufacturing.

ThunderX is fully compatible with the ARMv8 architecture. Single chip has 48
cores, and frequency of each core is up to 2.5 GHz. Dual-chip configuration is sup-
ported, and CPPI technology is used to achieve full cache consistency between dual-
chips, greatly simplifying application development. A powerful cache architecture and
high-speed main memory controller can meet the needs of many-core memory access
bandwidth. Each physical core on the chip has 78 KB of instruction cache and 32 KB
of data cache, and shares 16 MB of L2 cache. In addition, it supports up to four 72-bit
2400 MHz DDR4 main memory controllers. ThunderX is optimized for high compute
loads and is targeted at cloud-based HPC applications.

3 Parallel Resources of ARM

Deep learning models are generally highly parallelizable, so they can exploit hardware
parallel computing capabilities. On the ARMv8 platform, the available parallel
resources are multi-core MIMD and NEON SIMD coprocessor.

ARM’s research on multi-core processor technology is very mature. The big.
LITTLE technology and the latest DynamiQ technology have solved the power and
performance tradeoffs by integrating multiple cores with different architectures into a
single chip. ThunderX is a server-class chip and computing performance is the primary
design goal. The cores integrated in the chip are isomorphic, and all belong to the
standard high-performance ARMv8 architecture.

NEON first appeared in the ARMv7-A and ARMv7-R architecture as an extension
attribute, which is an advanced SIMD architecture extension essentially. The purpose
of this technology is to improve the user experience of multimedia applications, and to
accelerate audio and video decoding, 2D/3D image processing. NEON can also be used
to accelerate digital signal processing, computer vision, and deep learning. In the
ARMv8-A architecture, the length of each NEON register is 128, so a NEON ALU
instruction can complete the operation between two groups of 8 FP16 or 4 FP32 or 2
FP64 simultaneously. The use of NEON components can theoretically improve com-
puting performance in several ways. Firstly, the number of instructions is greatly
reduced. Secondly, NEON components contains multiple 128-bit registers. These
register files can be regarded as buffers controlled by compiler.

Developers can use NEON resources at multiple levels. The highest level is to
integrate the NEON library directly into applications, which is very simple and effi-
cient. If there is no library can provide the required functionality, developers can use
NEON built-in functions. Built-in functions are provided by the compiler, which is
equitant to one or more NEON instructions. At the lowest level, developers can write
assembly code directly, which can control NEON register allocation and instruction
pipeline precisely, to maximize NEON performance.
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4 Parallel Computing Library of ARM

In order to maximize the computing performance, we do not use a high-level deep
learning framework. Instead, we implement various depth models based on lower-level
library to optimize the code manually. At present, the HPC library for deep learning of
ARM platform includes Arm Compute Library (ACL), Arm Performance Library
(APL), OpenBLAS and so on.

We must make the best choice among the above three major computing libraries.
The CaffeOnACL Performance Report states that the ACL-based Caffe framework
performs better than OpenBLAS in many deep learning tasks. Especially in the LRN
task, ACL greatly exceeds OpenBLAS. The algorithm in common use also determines
that OpenBLAS cannot play the full performance of a specific platform. So in the deep
learning application of ARM platform, ACL is better than OpenBLAS.

In addition, we tested the GEMM interface of ACL and APL. For the multiplication
of two single-precision floating-point matrices with sizes of 10000 * 4096 and
4096 * 4096, test result shows that ACL is still more efficient. Besides, ACL is open
source, which offers the possibility to further optimize the code (Table 1).

5 Target Applications

We chose three deep learning models with different structure as the object of accel-
eration, to evaluate the computing ability of the target hardware platform
comprehensively.

5.1 RNNs-LSTM Model

The first depth model is RNNs-LSTM. RNNs are modeled for sequence and introduce
a directional loop within the network structure. The input of the hidden layer consists of
the output of the previous layer at the current time and the output of the layer itself at
the previous time. This design allows RNNs to perceive sequence semantics. RNNs-
LSTM is an improved variant of the traditional RNNs. It ameliorates the gradient
disappearance and explosion problem of RNNs, lead to improve the training conver-
gence and inference accuracy under longer sequence. We obtained a pre-trained small
LSTM model directly from paper [7]. This model is used for word prediction. The
input is a vectored word and the output is a probability vector.

The model consists of an input layer, two LSTM hidden layers, and a Softmax
output layer. From a computational point of view, the LSTM hidden layer consists of a
GEMM operation and some complex operations that updates the internal state of the

Table 1. Comparison of matrix multiplication between ACL and APL.

ACL APL

Single core 56 s 58 s
48 cores 3 s 3.8 s
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hidden layer. The Softmax layer also contains a GEMM operation, and a Softmax
normalization process.

5.2 Fully Connected Model

Then we consider using a depth model that only contains a fully connected structure.
AlexNet is a classic CNNs model applied for image classification. The last two hidden
layers of the network are fully connected layers. GEMM is the core of deep learning
computing, and its platform-independent and platform-related computational opti-
mization has been very mature. Therefore, it is very objective and important to select
the full-connection layer to evaluate hardware computing performance.

5.3 Confusion Tree Model

Finally, we also noticed the direction of the optimization of network structure in the
field of deep learning. The purpose of optimizing the network structure is to improve
the performance of the network or reduce the computational complexity. In practical
applications, the computational performance is influenced by the specific hardware
architecture. Therefore, studying the inference acceleration of the optimized model can
not only evaluate the computing performance of the hardware platform more com-
prehensively, but also analyze the value of network structure optimization from
practice.

The confusion tree [8] is an optimization model for the fully connected layer, which
greatly reduces the computation complexity. Relative experimental results show that
the accuracy of the image classification is comparable to that of the original model, and
even improves. This article uses a confusion tree that is designed for AlexNet, as
shown in Fig. 1.

Fig. 1. Structure of confusion tree for AlexNet.
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The confusion tree presents a tree structure as its name suggests. Leaf nodes are
calculated as prediction probability for each category. Each non-leaf node represents a
multi-class SVM that is implemented by combining multiple binary SVMs. The
number of binary SVMs is the same as the number of node branches.

For the image to be classified, its feature vector starts from the root node of the tree.
The multi-classification results at the root node determine the branches of the feature
flow. This calculation process is repeated until the feature vector reaches one of the leaf
node.

Each layer of the tree can be understood as a cluster of categories. This tree
contains four layers, so a total of four clusters are represented. The above three layers
are logical clusters, and the lowest layer is the actual cluster. The root node is the first
level, which represents the logical entire category. All image is in this entire category.
The second level of nodes represents the second logical cluster, and the third level
represents the third logical cluster. The fourth layer is the leaf node, which represents
the clusters of 100 categories. From this point of view, the inference process of con-
fusion trees is a process of category breakdown.

6 The Design of Experiments

6.1 Settings of Platform Comparison

We use the high-end Intel i7 7700 K as a comparison platform. The main performance
indicators are quad-core eight threads, 4.2 GHz frequency, 256 KB L1 cache, 1 MB
L2 cache, 8.0 MB L3 cache, SSE SIMD coprocessor. In order to make the results more
persuasive, all depth models are also implemented based on lower-level computing
libraries to excavate more computing performance. We chose MKL as Intel platform
parallel computing library. MKL is the fastest and most commonly used math library
on the Intel platform. It contains a series of basic algorithms such as BLAS, FFT and
DNN.

6.2 Parallel Granularity

In setting the scale of inference, we considered the actual scenario where the server
platform frequently performs large-scale inference tasks. In the LSTM application, we
set the mini-batch size to 9600. In the full connected model and confusion tree, we set
the mini-batch size to 10000.

The scale of data has been set, then the main factor affects implementation is
parallel model. For deep learning tasks, data parallelism is commonly used because it
can achieve high load balance. Data parallelism has two implementations, fine-grained
parallelism and coarse-grained parallelism. Parallel granularity is defined as the ratio of
computing and communication. Parallel granularity affects load balance, communica-
tion overhead, storage requirements and cache locality utilization. The choice of par-
allel granularity depends on the characteristics of the model, and we will discuss it
separately.
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6.3 Parallel Scheme for RNNs-LSTM

The fine-grained data parallelism for the LSTM model is shown in the Fig. 2. In this
case, multiple cores work together to complete a mini-batch inference task. a sequence
of word contains 7 inferences, and each inference contains 9 inference stages. If this
parallel scheme is adopted, the cores need to be synchronized 63 times during one
inference process.

The coarse-grained data parallel scheme is shown in Fig. 3. Each core completes a
whole mini-batch inference task. There will be no logical communication among cores,
but the use of cache locality is inferior to the former scheme. We will implement two
parallel models at the same time to quantify communication overhead and cache
competition costs, and obtain the best experimental results.

6.4 Parallel Scheme for Full Connected Model

The full-connection layer of AlexNet model contains a significantly smaller number of
inference stages than the RNNs-LSTM model. Having fewer inference stages means
that the synchronization overhead is small. Moreover, the main operation of the full
connected model is GEMM, the cache-friendly features of the fine-grained parallel
scheme will bring more benefits.

6.5 Parallel Scheme for Confusion Tree Model

The biggest difference between the confusion tree model and the previous two models
is that there are branches, which has a great impact on the parallel strategy selection.
The branches in the model add dynamicity to the data processing. That is, the data
flowing to the same branch can be processed at the same time, but it may flow to
different branches in the next phase. If a separate processing method is applied to the
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Fig. 2. The fine-grained data parallelism for RNNs-LSTM model.
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feature vectors of each image, only the vector-matrix multiplying operation can be
used, which is difficult to exert the full performance of the NEON SIMD components.

A better parallel strategy is to convert the vector-matrix multiplication into matrix-
matrix multiplication by handling all data that flows to the same branch. The drawback
of this approach is that combining the feature vectors into a matrix will lead to memory
copy overhead. We call this parallel strategy as Reorganization Parallelism.

We can ignore the existence of branches. Since all calculations in the confusion tree
are looking for the right branch, the data itself will not be changed. Then we can
perform calculation on all the nodes for each feature vector, and finally judge the flow
of feature vector in the confusion tree. This makes the entire inference process break
down into a GEMM operation and the final result statistics. It avoids memory copy
overhead. Although the amount of computation is increased, it is still about 1/18
compared to the full connected model. We call this parallel strategy as Intact
Parallelism.

6.6 Optimization Technology

The optimization techniques we apply on the ARM platform are: 1. ACL cache
optimization to reduce the cache miss rate. 2. Make full use of NEON components to
exponentially increase operating speeds.

Cache Optimization for ACL
The ACL library is open source software. After deeply researching the source code, we
find out that it performs optimization on the cache. Based on the hypothesis of the
hardware cache size, the amount of data for each iteration is controlled to reuse the
cached data and thus reduce the cache miss rate. If the hypothesis is too small, the
cache is not fully utilized. If the assumption is too large, the cache is insufficient to
cache all data, which directly leads to an increase of the cache miss rate.
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Fig. 3. The coarse-grained data parallelism for RNNs-LSTM model.
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However, the ACL library only have a default cache size assumption, which is
inconsistent with the hardware platform we studied. So we added an interface to the
ACL to set the cache size, setting the L1 data cache and L2 cache size to match with
ThunderX. After that, the performance of the multi-core GEMM was improved by
114%, as shown in Table 2.

NEON Related Optimization
The optimization of GEMM has been completed, and other operations can rely on
NEON components to further increase the speed of calculation, such as the internal
state update phase of the RNNs-LSTM model, which contains a large number of
sigmoid and tanh operations. We implemented two versions: scalar calculations and
vector calculations. After SIMD optimization, performance increased by 139%, as
shown in Table 3.

7 Experimental Results

7.1 Results of RNNs-LSTM Model

On the ThunderX platform, the coarse-grained parallel scheme achieves higher parallel
efficiency in both single-chip and dual-chip cases. The coarse-grained parallel model
has 81.9% parallel efficiency under 48 cores and 75.7% under 96 cores (Table 4).

The i7 7700 K has 4 physical cores. After the Hyper-Threading feature is enabled,
it has 8 logical cores. Experimental results show that parallel performance of 8 threads
is better than 4 threads. The final time of the i7 7700 K platform is 3637 ms.

Table 2. Comparison of GEMM performance after ACL cache optimization (time unit: s).

Original ACL Modified ACL

Single core 56 56
48 cores 3 1.4

Table 3. NEON-optimized operations of RNNs-LSTM model (unit of time: us).

Scalar version SIMD version Performance increase

Time 20800 8700 139%

Table 4. ThunderX platform RNNs-LSTM model experiment results (time unit: ms).

Single
core

48 cores
fine-grained

48 cores
coarse-grained

96 cores
fine-grained

96 cores
coarse-grained

Time 149093 4528 3788 3900 2050
Speedup
ratio

1.0 32.9 39.3 38.23 72.7
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For this model, communication overhead of the fine-grained parallel seriously
affects the speedup ratio. The parallel efficiency of the coarse-grained parallel model is
ideal. Although i7 7700 K only has 4 physical cores, with the support of hyper-
threading, high clock speed, and multi-level cache, it shows strong computing ability.
The final experimental results show that single-chip ThunderX is equivalent to the i7
7700 K, and the dual-chip performance is 1.77 times that of the latter.

7.2 Results of Full Connected Model

We divided the last two full-connection layers of AlexNet into multiple phases. The
first fully connected layer consists of GEMM, Bias addition, and Relu activation. The
second fully connected layer consists of GEMM and Bias addition. The final result is
shown in Table 5.

For the i7 7700 k platform, we found that the overall efficiency is higher when
incorporating Bias addition operations into GEMM. The final result is shown in
Table 6.

Experimental results show that the parallel efficiency of ARM is 79.1%, and the
single chip performance is 0.89 times that of i7 7700 K.

7.3 Results of Confusion Tree Model

Table 7 shows the experimental results of the Reorganization Parallelism for the
ThunderX platform. It can be seen that the matrix reorganization time accounts for 42%
to 54% of the whole processing time, which seriously reduces the overall computing
performance.

Table 5. ThunderX platform full-connect model experiment results (time unit: ms).

Thread
count

FC1
GEMM

FC1
Bias

Relu FC2
GEMM

FC2
Bias

Total
time

Speedup
ratio

1 56053 243 205 1556 4 58061 1
4 14339 95 87 392 1 14914 3.89
8 7344 59 54 202 0.6 7659 7.58
16 3732 28 27 110 0.4 3897 14.90
48 1448 17 18 46 0.4 1529 37.97

Table 6. i7 7700 K platform full-connect model experiment results (time unit: ms).

FC1 GEMM Relu FC2 GEMM Total time

974 274 113 1361
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Then Intact Parallelism is applied, whose results are shown in Table 8. It can be
seen that although the GEMM time has increased, it is no longer necessary to perform
matrix reorganization. Compared to Reorganization Parallelism, performance increased
by 136%.

In the i7 7700 K platform, Intact Parallelism is adopted directly. The experimental
results are shown in Table 9.

Experimental results of the confusion tree show that the performance of single-chip
ARM is 1.39 times that of i7 7700 K.

7.4 Energy Efficiency Comparison

A power socket is used to measure the whole machine power consumption of these two
platforms. The power of ThunderX is 270 w under no-load and 297 w under single-
chip full-load and 316 w under dual-chip full-load. The power of i7 7700 K is 38 w
under no-load and 112 w under full-load. In terms of energy efficiency, the former is
inferior to the latter.

Table 7. Reorganization parallelism results for ThunderX platform (Time Unit in ms).

Thread
count

Time of
GEMM

Time of Bias
addition

Time of matrix
reorganization

Total
time

Speedup
ratio

1 2375 1.9 1748 4129 1
4 607 0.4 365 1042 3.96
8 319 0.2 199 524 7.88
16 166 0.1 143 323 12.78
48 86 0.1 152 283 14.59

Table 8. Intact parallelism results for ThunderX platform (Time Unit in ms).

Thread count Time of GEMM Time of result statistics Total time Speedup ratio

1 3415 11 3426 1
4 914 11 925 3.70
8 450 5 455 7.53
16 247 8 255 13.44
48 115 5 120 28.55

Table 9. Intact Parallelism results for i7 7700 K platform (Time Unit in ms).

Time of GEMM Time of result statistics Total time

129 38 167
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The Cavium ThunderX does pretty badly here, and one of the reason is that power
management either did not work, or at least did not work very well. Besides, the
cooling system of server is much stronger than desktop, which causing more power
consumption.

8 Conclusion

Combining the experimental data of three deep learning models, performance of single-
chip ThunderX is comparable to mainstream high performance x86 platforms.
Performance of dual-chip can reach 1.77 times that of the latter. This suggests that
high-performance ARM chips can be deployed in the cloud to complete large-scale
deep learning inference tasks.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

2. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: CVPR (2015)
3. Lee, V.W., Kim, C., Chhugani, J., et al.: Debunking the 100X GPU vs. CPU myth: an

evaluation of throughput computing on CPU and GPU. ACM SIGARCH Comput. Arch.
News 38(3), 451–460 (2010)

4. Ni, H.: Ncnn: a high-performance neural network inference framework optimized for the
mobile platform (2017). https://github.com/Tencent/ncnn

5. Rungsuptaweekoon, K., Visoottiviseth, V., Takano, R.: Evaluating the power efficiency of
deep learning inference on embedded GPU systems. In: 2nd International Conference on
Information Technology (INCIT) 2017, pp. 1–5. IEEE (2017)

6. Zhu, K., Jiang, J.: DSP based acceleration for long short-term memory model based word
prediction application. In: 2017 10th International Conference on Intelligent Computation
Technology and Automation (ICICTA), pp. 93–99. IEEE (2017)

7. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329 (2014)

8. Jin, R., Dou, Y., Wang, Y., et al.: Confusion graph: detecting confusion communities in large
scale image classification. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence, pp. 1980–1986. AAAI Press (2017)

Research on Parallel Acceleration for Deep Learning Inference 41

https://github.com/Tencent/ncnn
http://arxiv.org/abs/1409.2329


www.manaraa.com

Research on Acceleration Method of Speech
Recognition Training

Liang Bai, Jingfei Jiang(&), and Yong Dou

National University of Defense Technology, Changsha, China
{bailiang12,yongdou}@nudt.edu.cn,

jingfeijiang@126.com

Abstract. Recurrent Neural Network (RNN) is now widely used in speech
recognition. Experiments show that it has significant advantages over traditional
methods, but complex computation limits its application, especially in real-time
application scenarios. Recurrent neural network is heavily dependent on the pre-
and post-state in calculation process, and there is much overlap information, so
overlapping information can be reduced to accelerate training. This paper
construct a training acceleration structure, which reduces the computation cost
and accelerates training speed by discarding the dependence of pre- and post-
state of RNN. Then correcting the recognition results errors with text corrector.
We verify the proposed method on the TIMIT and Librispeech datasets, which
prove that this approach achieves about 3 times speedup with little relative
accuracy reduction.

Keywords: Speech recognition � Accelerating training � Text correction

1 Introduction

Communicating with machines and letting machines understand what you say is
something that people have long dreamed of. Speech recognition has been a hot topic in
recent decades. Before 2000, many core technologies related to speech recognition
emerged, such as Gaussian Mixture Mode (GMM), Hidden Markov model (HMM),
Mel-Frequency Cepstral Coefficients (MFCC) and its difference, n-gram language
Models, discriminative training and various adaptive technologies. These technologies
have greatly promoted the development of automatic speech recognition (ASR) and
related fields. In recent years, various types of Recurrent Neural Networks (RNNs), such
as Long Short Term Memory (LSTM) [1, 2] and Gated Recurrent Unit (GRU) [3–5]
began to be used in automatic speech recognition and achieved better performance
relative to feed-forward neural networks. The main reason is that recurrent neural net-
work can remember information which cover the long history of the speech sequence,
while the feed-forward neural network uses context information within a limited-length
window.

However, the connection of recurrent neural networks is more complex than that of
feed-forward neural networks, which leads to a greater amount of calculations and
results in slower training. This limits the application of recurrent neural networks in
tasks that require high real-time performance. In order to pursue better results, many of
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state-of-the-art methods in deep learning focus on increasing model capacity and cal-
culations, which often involve in using a large number of hyperparameters and setting
larger and deeper networks. We know that growing number of network layers and
greater hyperparameters significantly increase training time. For example, training a
state-of-the-art translation or speech recognition system has to take several days [6–8].
Computation has become the bottleneck of deep learning development. One way to
solve this problem is to reduce the size of neural networks, such as reducing the
number of network layers or the number of nodes in each layer. However, using a
smaller neural network will obviously affect the accuracy of system, so it is necessary
to keep the network at a reasonable size [9, 10]. Another way is to modify the structure
of the neural network, reducing the amount of computation by modifying neural net-
work. In order to achieve the purpose of accelerating the calculation, this paper uses the
SRU network structure to eliminate the dependencies of pre- and post-state, speed up
the training speed of the neural network, and correct the recognition results to improve
the accuracy. Finally, we finish the entire speech recognition acceleration system.

2 Methods

2.1 Acoustic Characteristics

The response of the human ear to the sound spectrum is non-linear. Processing audio in
a way similar to human ear can improve the performance of speech recognition. For
speech recognition tasks, common acoustic features are Fbank, MFCC. The extraction
of MFCC features is obtained by conducting discrete cosine transform on the basis of
Fbank features. MFCC has better discrimination and is more suitable for characterizing
sounds. The Fbank feature is close to the human ear response characteristics, its fea-
tures are highly correlated (adjacent filter groups have overlap), and neural networks
can use these correlations to express better feature better.

2.2 Network Model

2.2.1 RNN Network
RNN’s ability to learn and transform data over a long period of time makes them stand
out from other machine learning methods, and has a significant effect on speech
recognition [11]. However, ordinary RNNs are prone to gradients disappearing or
exploding during training. Therefore, RNN variants such as LSTM, GRU, etc. are
proposed. These variants control the flow of information through gates, which can
alleviate the problem of gradient disappearance and explosion. And they have better
performance on a variety of tasks. But it also increases the computation complexity
while improving RNN performance. RNN needs to use the output state ht�1 of the
previous state in the current state calculation. For instance, the forget vector would be
calculated by ft ¼ r wf xt þ rf ht�1 þ bf

� �
. The inclusion of rf ht�1 breaks independence

and parallelism: each dimension of the hidden state depends on other, so the calculation
of ht must wait until the entire ht�1 is available. Lei Tao et al. [12] optimized the main
calculation part of each time step so that it doesn’t need to wait the calculation of the
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previous state. Thus it can be easily parallelized. The relevant equations for the SRU
are given below.

~xt ¼ wxt ð1Þ
ft ¼ r wf xt þ bf

� � ð2Þ

rt ¼ r wrxt þ brð Þ ð3Þ

x0t ¼ whxt ð4Þ

ct ¼ ft � ct�1 þ 1� ftð Þ � ~xt ð5Þ

ht ¼ rt � g ctð Þþ 1� rtð Þ � x0t ð6Þ

According to the above equations, the structure is described as follow:
From Fig. 1 and Eq. (6), we can see that its advantages are reducing the depen-

dency of pre- and post-state compared with the traditional RNN networks,and each
state can be calculated simultaneously.

2.2.2 Speech Recognition Architecture
It is difficult to give a label to a frame of speech recognition data, but it is easy to
identify the corresponding pronunciation labels on tens of frames data. In the traditional
speech recognition model, we must always strictly align text with the speech before we
train the speech model. This has two disadvantages. First, strict alignment requires
manpower and time. Second, the label predicted by model is only the result of local

X +

X1-

σf σr

g

Ct-1 Ct

ht

Xt

W*

X +

X1-
ft Xt’

rt

Wh

Fig. 1. A block diagram of the SRU structure and flow chart.
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classification and cannot give the result of the entire sequence after strict alignment. It
needs to process label to get desired result. The dimensions of the RNN output are
obviously inconsistent with really matched label dimensions, so there must be some
redundant information in output of the RNN. For example, we actually predicted same
category in the two adjacent moments. Alex et al. proposed Connectionist Temporal
Classification (CTC) [13] method, which effectively solves this problem. Its core idea
is to add blank in output text of the RNN and use a dynamic programming algorithm to
solve. We build a complete identification acceleration network module based on this.

The network structure diagram is shown in Fig. 2. It contains three main modules.
A convolutional neural network for feature extraction, a recurrent neural network for
speech recognition, and a text correction module. The input feature sequence [xt-m,…,
xt, …, xt + n]is Fbank feature from speech preprocessing. Because CNN’s convolu-
tions have translation invariance in the frequency domain, CNN can be used to extract
better feature using correlation. After the features are acquired, then we input them into
RNN network. Because the calculation of post state depends on output of previous
state, traditional RNN networks destroy parallelism and independence of calculations.
We see that Eq. (1) * (3) are calculated with removing the dependence on ht�1 and
they are only relevant to input xt of this state. So each state can be calculated simul-
taneously in parallel, which significantly increasing the computational strength and
GPU utilization. Equation (4) adds a highway connection for retaining information.
Equations (5) and (6) are calculated in terms of elements, so it is easy to calculate.
Now, the bottleneck of calculation is the four matrix multiplications of Eqs. (1) * (4).
The solution is to combine the four matrix multiplications into a matrix multiplication
calculation, and then compile all the element operations into one kernel function, which
makes calculation just call one function each time so that each layer has less com-
putational complexity and higher processing speed, and reducing the training com-
putation overhead.

2.3 Text Correction

Error correction in speech recognition is an important task in speech understanding.
Due to the limited accuracy of speech recognition, the results of speech recognition

often have errors, which will hinder the follow-up work of speech understanding and
increase the difficulty of speech understanding. The error correction can correct some
error results, which help improve the accuracy of speech recognition. According to the
Bayesian theory, we can get correct word closest to the recognized word. Assume that
recognized word is we and we need to find correct word wc in all candidate words so
that the conditional probability for we is the greatest, that is, Obtaining
argmaxPðwcjweÞ is equivalent to the Bayesian theory above:

argmaxc P(wejwcÞP wcð Þ=P weð Þ
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Since the result of the recognition can be any word, for any wc, the probability
P weð Þ of appearing we is the same, so we ignore it in the above formula and write as
follow:

argmaxc P(wejwcÞP wcð Þ

We obtain P wcð Þ by training the probability model with a huge corpus, and then we
need to determine the correct spelling of the word set. We use the editdistance to
measure. According to the study, about 80–95% of misspellings are within 1 editdis-
tance. Based on statistical observations of the recognition results, we decided to use
words with an edit distance of two. We can consider a limited number of cases where
the editing distance is allowed to be 3. For example, we can only insert a vowel next to
the vowel, or replace the vowel, etc. These basically cover All situations. Error cor-
rection through text can effectively solve the errors in the recognition result.

3 Experiments

We use Pytorch to implement entire acceleration network and test it on the timit and
Librispeech datasets. Timit dataset is an acoustic-phonetic continuous speech corpora
constructed by Texas Instruments (TI), the Massachusetts Institute of Technology
(MIT), and the Stanford Research Institute (SRI). The speech sampling frequency is
16 kHz, which contains of 6300 sentences. All the sentences are manually segmented
at phone level. Timit is relatively small, which can complete whole experiment in a

Fig. 2. Speech recognition acceleration network structure.
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short time, and it is sufficient to show the performance of the system. Librispeech is a
large-scale speech dataset that can be downloaded for free. LibriSpeech has its own
training, validation and testing models. We use about 100 h of audio files to train and
validate our model and original 16 kHz sampling rate. We use a 20 ms sliding window
and a 10 ms step size to calculate power spectrum features. We report the letter error
rate (LER) on the Librispeech and phoneme error rate (PER) on the timit.

3.1 Result

Table 1 reports the performance of different RNN networks with Fbank feature under
the timit and Librispeech datasets. Timit has phoneme-level annotations and we report
PER. Librispeech does not have phoneme-level annotation, so we use LER indicators
to measure. We found that the accuracy of the SRU dropped by about 2-3%. The
reason is that SRU eliminate the state dependency pre- and post-state of RNN. The post
state don’t remember useful information retained by the previous state. Although the
highway connection was used to retain the information. However, the input information
is retained instead of the information remembered by previous state, and useful
information will loss. Therefore, the accuracy will decrease. After adding text corrector,
we found that the accuracy rate increased by about 4%.

Figure 3(a) reports PER for different RNN networks under the timit dataset. We
found that the convergence speed of SRU network is mostly the same as that of GRU.
And the initial convergence speed of LSTM is slow. The possible cause is that network
parameters are not initialized properly, which resulting in poor network performance. 3
(b) reports LER under Librispeech. We found that our accelerating network’s perfor-
mance is well, and recognition accuracy rate does not have much impact.

Table 2 compares the training time of different RNN networks under timit and
Librispeech. We find that our accelerating network training speed is about 3 times
faster than LSTM and GRU.

Table 1. Recognition accuracy of different RNN networks.

RNN structure PER on timit (%) LER on Librispeech (%)

LSTM 17.2 16.9
GRU 17.9 17.4
SRU 23.5 23.7
SRU (with text-corrector) 19.3 19.9
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Fig. 3. (a) Recognition accuracies (y-axis) of LSTM, GRU, SRU and SRU(with text corrector)
on Timit dataset and (b) is on Librispeech dataset. X-axis: training epoch (in seconds). They are
performed on PyTorch and a desktop machine with a single Nvidia GeForce GTX 1050Ti GPU,
Intel Core i7-7700 K Processor.
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4 Conclusion and Future Work

We introduce a simple end-to-end speech recognition network that combines a con-
volutional neural network, a recurrent neural network, and a text error corrector. We
aim to improve the training speed of the neural network on the premise of ensuring its
accuracy. We test timit and Librispeech datasets respectively and find that training
speed of the neural network has been greatly improved with little accuracy loss. Since
text corrector uses basic corpus, correction doesn’t have good performance. In the
future, we can build a corpus with more statistical information, such as the probability
of identifying errors based on the statistical similarity of phonemes, and improve the
recognition accuracy.
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Abstract. Data prefetching is an effective approach to improve performance by
hiding long memory latency. Existing profiling feedback optimizations can do
well in pointer-based linked data structure prefetching. However, these opti-
mizations, which instrument and optimize source code during compiling or post
link, usually incur tremendous overhead at profiling stage. Furthermore, it is a
mission impossible for these methods to do optimization without source code.
This work designs and implements an Event Sampling based Prefetching
Optimizer, which is a post-link prefetching based on hardware performance
counters event sampling. Evaluation on SW26010 processor shows that with the
proposed prefetching approach, 9 out of 29 programs of SPEC2006 can be
speeded up by about 4.3% on average with only less than 10% sampling
overhead on average.

Keywords: Data prefetching � Stride profiling � Sampling
Post-link optimization

1 Introduction

As predicted by the Moore’s Law, last 30 years have seen a trend that the performance
gap between processor and memory becomes bigger and bigger, which severely
throttles the performance of current computer systems. Although multi-level caches
have been introduced by processor vendors to alleviate this impact, Memory wall
remains the major bottleneck that hinders the improvement of processor performance.
Particularly, previous research shows that close to 60% of processor stalls are caused
by the long memory access latency [1].

It is well known that data prefetching technology is a very effective way to hide
memory access latency. Based on static compiling analysis, Mowry [2] and Bernstein
[3] explored data prefetching techniques, which mainly aim at the regular array access
in the loop. However, there is a large number of chained data structures (irregular
access) based on pointers, such as linked lists, trees, graphs, etc., in the current
applications. It is difficult to prefetch these pointer accesses on the heap using static
compiling methods. Fortunately, Chilimbi [4] and Wu [5] found that although the
pointer addresses are hard to analyze during compiling, these accesses often show
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regular stride-access patterns at runtime. With the inspiring patterns of the irregular
memory accesses, prefetching instructions can be opportunistically inserted to improve
the performance of applications.

Existing profiling feedback optimizations profile dynamic memory access with the
help of instrumented functions, which are instrumented during compiling [5, 16] or
post-link [6]. These approaches introduce significant overhead when programs are
profiled, and depend on the source code of programs. In the SW26010-based compiler,
both classic static prefetching and profiling feedback prefetching have been deployed.

In this paper a new lightweight event sampling based profiling feedback
prefetching, Event Sampling based Prefetching Optimizer (ESPO), is proposed to
overcome the above disadvantages and implemented in the post-link part of the
SW26010 system. The proposed prefetching can optimize the target program without
the present of source code, and the profiling overhead can be throttled within an ideal
level by adjusting the sampling frequency.

Specifically, thanks to the hardware performance counters and the configurable
sampling frequency mechanism, the sampling overhead of ESPO could be trivial.
Experimental results show that the overhead of this sampling is less than 10% of the
execution time of the target program on average. Besides that, compared with the
existing methods based on instrumentation, ESPO is non-intrusive and does not modify
the executable file. And benefit from the trivial sampling overhead, ESPO is able to
follow the original execution behavior during profiling progress.

The input of ESPO is the linked executable program. No source code of the target
program is needed. Recompiling progress is also unnecessary. In another word, ESPO
is independent of compilers and does not affect the previous optimization.

The main contributions of this work are listed as follows:

1. An Event Sampling based Prefetching Optimizer is proposed. Instead of inserting
additional source code to do profiling, ESPO greatly reduces the sampling overhead
with the help of the hardware performance counters and the configurable sampling
frequency mechanism.

2. Based on the profiling information and the variance analysis on samples, ESPO
inserts prefetch instructions in programs according to the stride-access patterns at
runtime. As this technique works during post-link, it can optimize the legacy target
programs without the present of source code.

3. ESPO has been deployed on the Chinese home-made processor, SW26010, which is
the key part of the Sunway Taihu Light supercomputer system [19]. Evaluation
shows that on SW26010 processor, the proposed prefetching improves the per-
formance of 9 out of 29 SPEC2006 benchmarks by about 4.3% on average, which is
due to the 4% reduction of the processor stall periods caused by memory access of
ROB head.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 describes the composition and design of the event sampling based profiling
feedback prefetching in details. Section 4 presents our evaluation method and perfor-
mance metrics. Experimental results and analysis are proposed in Sect. 5. Section 6
concludes the paper.
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2 Related Work

Long memory access latency is one of the major obstacles to improve performance of
modern microprocessors. For example, one access miss on last level cache usually
incurs up to hundreds cycles delay. As instructions are sequential submitted in most
existing processors, the long-delay access miss can block a large number of associated
instructions, and in some case, the processor may be stalled. The prefetching tech-
nology is proposed to load data from memory to cache in advance to reduce cache miss
rate, and to hide the access latency caused by prefetching itself with appropriate
scheduling strategy. Prefetching has attracted the attention of experts in the fields of
compilers, Java virtual machines, static post-link optimization and dynamic opti-
mization systems.

Mowry [2] proposed a classic data prefetching method based on compiling anal-
ysis. The method inserts prefetch instructions by local analysis and performs the
scheduling of loop unrolling. It works well when prefetching data with regular access
pattern. Pointer-based linked data structures usually depend on memory allocation
interference, such as malloc, to get the heap space. Due to the existence of the same
stride between the addresses of the adjacent nodes, in another word, the difference
between the memory access addresses in two consecutive iterations of the same
instruction is constant, profiling can be used to effectively find these strides and then
data can be prefetched. Inspired by this fact, Wu [5] and Qi [16] implemented the
profiling feedback compiling optimization based on instrumentation in compiler.

Data prefetching is also an important method on improving the performance of Java
applications. Because Java is an object-oriented language, frequently memory access to
the heap data introduces the major overhead of an application. To improve the per-
formance of Java application, people profiles memory access to heap data on Java
virtual machine, and dynamically prefetch heap data. Zou et al. [7, 18] proposed an
adaptive algorithm based on instrumental analysis, which could effectively reduce the
overhead caused by over-instrumentation. Tabatabai et al. [8] profiled cache miss
information by sampling hardware performance events, depended on garbage collector
to maintain the stride of target addresses, and designated JIT compiler to insert prefetch
instructions.

Regarding the work of data prefetching in the static post-link optimization system,
C.K. Luk et al. implemented post-link prefetching optimization at the target code level
in some tools respectively, such as pixie, spike of Alpha [6], and Ispike of Itanium [11].
The idea is to obtain the stride of memory access with the help of profiling, and then
prefetching instructions are inserted directly into the target code. However, the
instrumentation-based profiling approach introduces significant overhead.

The work on data prefetching in dynamic optimization system is also abundant.
Chilimbi et al. implemented a dynamic data prefetching method for hot data stream in
Vulcan, including 3 iterative phases: burst sample profiling, analysis optimization, and
persistent execution [4]. Lu et al. proposed a runtime data prefetching strategy in the
ADORE dynamic optimizer. Firstly, the strategy sampled programs by the performance
monitoring components of the target machine. Then, it identified the loops with a large
amount of cache miss, and analyzed the data access pattern of these loops to prefetch
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data [9]. Beyler et al. designed a performance-driven data prefetching scheme in their
homemade dynamic software optimization system. By associating each load instruction
with a finite state automaton which is periodically monitored, the prefetching
instructions can be inserted or dropped in a cycle according to requirements.

Recent years, with the rapid development of multi-core processors, people become
more and more interesting on data prefetching on multi-core systems. For example,
Kamruzzaman et al. [13] forked another threads to prefetch data needed by the main
thread. The main thread is able to switch among cores in the order of prefetching paths,
and to get the data that has already been prefetched. On the latest mainstream processor
platforms, Mehta et al. [14] investigated the impact of different micro-architectures on
prefetching strategy. Inspired by the research on Intel Sandy Bridge processor and Intel
Xeon Phi processor, they proposed an architecture-related, multi-level and
hardware/software coordinated prefetching method, which prefeches data to different
memory/cache levels to improve processor performance.

Zhang et al. [15] proposed an event driven self-repairing dynamic prefetching
method on the Trident platform. This method adopted a hardware/software collabo-
ration strategy and proposed some requirements for the hardware architecture, such as
adding Watch table and Delinquent load table. These additional hardware components
are used to monitor the execution behavior of programs and to obtain the hot run paths
of the program, including Delinquent reference information on these paths. One of the
advantages of this method is that it can dynamically correct the prefetching distance.
Although this adaptive approach inevitably adds some hardware overhead, it still
delivers 12% performance improvement over those ways fixed prefetching distances.
Compared with the method proposed by Zhang et al., ESPO is a software solution and
there is no need to deploy additional hardware components.

Above all, it can be seen that profiling feedback data prefetching is usually
implemented with the help of instrumentation. Instrumentation based prefetching can
profile any data access information and improve prefetching accuracy. However, one of
the disadvantages is the tremendous overhead of profiling in the first run. For example,
the experimental results on the SPEC2000 benchmark suite show that the profiling
overhead of the post-link optimizer Spike proposed by Luk et al. [6] is 15–30 times
longer than the execution time, whereas the profiling overhead of the linked data
structure prefetching technology based on profiling feedback compilation proposed by
Wang [17] is up to 40 times longer than the execution time. Besides that, the profiling
feedback compiling optimization needs to instrument and recompile the target program,
which means the program cannot be optimized when its source code is unavailable.

3 Post-link Prefetching Based on Event Sampling

In previous works, we have implemented a profiling feedback compilation for
prefetching linked data structure [16, 17]. However, as described in Sect. 2, there are
two drawbacks in these existing methods: huge profiling overhead and source code
requirements. In this wok, an Event Sampling based Prefetching Optimizer, a.k.a.
ESPO, is proposed.
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When ESPO works, there are three stages, which are Event based Sampling
(Sect. 3.1), Sample Analysis (Sect. 3.2) and Inserting Prefetch Instructions (Sect. 3.3).
Event based Sampling samples programs based on hardware performance counters,
instead of inserting additional source code. Sample Analysis analyzes the output of the
first stage to find those hot-spot instructions in which the cache accesses are missed
frequently, and to obtain the memory access patterns of these instructions. At the last
stage, an optimizer SWLTO is proposed to insert prefetch instructions.

The following sections describe how each component of ESPO is designed, and
how ESPO works in details.

3.1 Event Based Sampling

SW26010 processor provides supports of multiple performance counters, such as
DCache access miss, SCache access miss, D-TLB access miss, and so on. When
performance counters overflow, interrupts are enabled to handle these exceptions.

As shown in Fig. 1, in the sampling phase, the target program is loaded by Sample.
run. Then, the program runs in an operating system environment which supports
interrupts when performance counters overflow. Sample.run selects events and ini-
tializes performance counters with APIs provided by PerfMon. Particularly, in this
work, ESPO samples the access miss of last level cache. When the number of access
miss exceeds the threshold, a.k.a. the performance counter overflows, an interrupt
occurs and Sample.run profiles the samples of the target program.

Figure 2 shows the sample format. One sample contains three key elements,
including R.pc, R.addr and R.latency. R.pc represents the PC value of the memory
access instruction R in the access miss event. R.addr indicates the memory address of

Fig. 1. Component and flowchart of ESPO
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the PC. R.latency is the delay between two samples for access miss event, and the delay
can be represented as the number of cycles.

A dynamically configurable Threshold is supported in Sample.run. When the
number of cache miss exceeds Threshold, the target program is sampled. The setting of
Threshold impacts the quality of sampling significantly. The setting principles are
shown as follows.

1. In order to effectively throttle the sampling overhead, the value of Threshold cannot
be too small, that is, the samples should not be too dense.

2. To ensure the accuracy of sampling, the value of Threshold cannot be too large;
otherwise it will make the samples too sparse to meet the sampling requirement.

Empirically, Threshold is set as 800 misses according to the complex environment
in this work.

Evaluation shows that it is not necessary to perform a completely uniform sampling
when the program is running. In view of this, the sampling periods can be classified as
two alternative phases, sleep phase and active phase. The two phases work in an
alternative way.

As shown in Fig. 3, in the sleep phase, an interrupt is triggered when there are Cs
access miss events. According to the aforementioned principles, the value of Cs usually
needs to be large enough to effectively reduce the sampling overhead. In the active
phase, an interrupt is triggered when there are Ca access miss events. This method,
which uses different sampling parameters respectively during sleep and active phases,
can throttle the sampling cost within an ideal level.

3.2 Sample Analysis

After the first sampling, Foo.profile is generated. At this step, Foo.profile is analyzed to
find those hot-spot instructions in which the cache accesses are missed frequently, and
to obtain the memory access patterns of these instructions. A sample analysis module

Fig. 2. Sample format

Fig. 3. Two-phase sampling
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called Stride_Analyser is implemented in the post-link optimizer SWLTO on the
SW26010 processor. The analysis mode works in two analysis phases: determining the
candidate prefetch instructions and calculating the address stride of the cache miss
access.

Determining the Candidate Prefetch Instructions
In the case that a memory access instruction (a.k.a. Delinquent References [12]) is
frequently executed, and the cache accesses of the instruction are often missed,
prefetching usually brings satisfying performance benefits. Sorting the samples
according to the frequency of PC, it can be seen that the higher the frequency is, the
more frequently the cache miss occurs. If a memory reference with a high frequency
shows some access patterns, prefetching will be performed. In this work, Delinquent
References whose number of miss exceeds a certain threshold are taken as examples to
analysis memory access patterns.

Firstly, as shown in Fig. 4, for each Delinquent Reference, the collection of the
stride address of access miss, represented as set S, is formed.

Empirically, if a memory reference within a loop accesses data in a regular pattern
and it has not been prefetched or optimized, then the address stride of miss accesses
will show some regular pattern. However, practically, memory access behavior is
complicated, and system noise makes it harder to find any regular pattern. In order to
obtain accurate information from the sample set S, an algorithm is introduced to cal-
culate the mean and variance of the sample set S, which are respectively denoted by M
(S) and D (S) as shown in formula (1) and (2).

MðSÞ ¼ S1 þ S2 þ ... þ Sn

n
ð1Þ

DðSÞ2 ¼ ðS1�MÞ2 þ ðS2�MÞ2 þ ... þ ðSn�MÞ2

n
ð2Þ

The smaller D(S) is, the smaller fluctuation of the stride is. In another word, the
memory access pattern will be more stable if D(S) is smaller. The candidate prefetch
instructions are determined by excluding the Delinquent References with larger
variances.

Fig. 4. Compute miss address stride
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Calculating the Address Stride of Miss Access
For each candidate prefetch instruction selected in the above stage, the addresses of
cache access misses are analyzed in the sample. Existing studies show that there is a
regular stride pattern when accessing dynamically allocated heap data in the irregular
code segment. In this section, the method proposed by Luk et al. [11] is used to
calculate the stride of miss addresses. Firstly, the difference between adjacent addresses
is calculated. Then, the greatest common divisor among the differences is obtained.
Because sampling only profiles cache miss address, rather than the actual access
address, it is impossible to determine the stride between the actual memory access
addresses in two consecutive iterations by sampling. Fortunately, if there is a regular
stride pattern, in most cases, these strides will equal to the greatest common divisor
GCD of the address difference or equal to the multiple of GCD.

As shown in Fig. 5, the four consecutive samplings result in three different address
differences. The greatest common divisor of these differences is stride. Therefore, it can
be determined that the size of the access stride for this candidate prefetch instruction is
stride bytes or a multiple of stride bytes.

3.3 Inserting Prefetch Instructions

The prefetch module (Prefetcher shown in Fig. 1) is implemented in the optimizer
SWLTO. It receives candidate prefetch PC instructions and the hot-spot stride infor-
mation from the sample analyzer Stride_Analyser. Then, prefetch distance is calculated
and prefetch instructions are emitted and inserted in the source code.

Prefetch address ¼ base addrþ distance � strideð Þ ð3Þ

As shown in above formula, base_addr indicates the base address of the memory
access instruction, stride is the stride value provided by Stride_Analyser, and distance
represents the prefetch distance which means the number of iterations prefetched in
advance.

Inspired by the previous work [2], we set the general formula of calculating pre-
fetch distance as:

Distance ¼ L=W ð4Þ

Fig. 5. Using GCD to discover strides from miss addresses
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Where L is the overhead of cache miss represented by the number of clock cycles,
W represents the execution time of a loop iteration, which can be considered as the
estimated time between two consecutive executions of one instruction. Likewise, the
unit of W is clock cycle.

The following heuristic algorithm is used to calculate W:

M(R.Latency) can be obtained according to the following calculation steps:

1. First, take the collection of R.latency from the sample in active phase.
2. Then, the noise reduction process is carried out to eliminate outliers in the set.
3. Finally, the average of R.latency, that is, M(R.Latency) can be calculated.

Based on the prefetch distance, prefetch instructions are emitted and inserted before
the corresponding memory access instructions.

4 Experiment Settings

SPEC2006 benchmark suite is used to evaluate the performance of single core on a
Chinese home-made processor, SW26010. The processor is a 64-bit RISC processor
with 32 K L1 data cache, and supports software prefetching instructions. The compiler
used in this evaluation is SWCC (SHENWEI Compiler Collection, SWCC), which is
designed for SW26010 processor.

Firstly, cache miss rate is recorded. The access number of L1 data cache is rep-
resented as Reference_counts, and Miss_counts means the number of cache miss. So,
the cache miss rate can be represented as Formula (5) shows. As shown in Fig. 6,
compiled with –O3, 9 out of 29 SPEC2006 programs show at least 10% cache miss
rate, and the highest cache miss rate is 38.44%, which is reported in 429.mcf case.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Fig. 6. SPEC2006 DCache miss ratio

A Post-link Prefetching Based on Event Sampling 61



www.manaraa.com

miss ratio ¼ Miss counts
Reference counts

ð5Þ

According to previous works [1], 60% of pipeline halts are caused by LIMCOS
(Loads Incurring Majority Commit Stalls). However, no work evaluates the influence
of LIMCOS on SPEC2006 benchmark suite so far. With the help of the performance
counters of SW26010, the periods of executing uncompleted memory instructions in
ROB are recorded. In Fig. 7, the evaluation result confirms that the programs in
SPEC2006 have the similar memory access feature as that caused by LIMCOS, and it
also shows that due to the memory stall, the memory accessing performance of the
program with higher DCache miss rate is lower than the others.

In Fig. 7, it can be seen that the average proportion of stall ratio caused by
uncompleted load in ROB is 59.9%. In the following analysis, this average proportion
is considered as the metric to evaluate the degree of performance improvement.

5 Evaluation

An event-sampling based prefetching optimization, ESPO, which is a part of post
linker, is implemented as described in Sect. 3. The following subsections show the
results of the optimized prefetching and the overhead of the first sampling.

5.1 Performance Evaluation of the Optimized Prefetching

ESPO inserts optimized object codes into the –O3 compiled program, which has sig-
nificant commit stall ratio. As shown in Fig. 8, compared the performance of original
programs, the performance of optimized programs is improved 4.3% on average.

To illustrate the effect of prefetch optimization, the average commit stall ratio of
these 9 benchmarks caused by uncompleted load in ROB with prefetching is compared

Fig. 7. SPEC2006 Commit Stall ratio caused by uncompleted load in ROB
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with that of the original ones. As shown in Fig. 9, the prefetch optimization reduces the
average commit stall ratio from 59.9% to 55.9%.

5.2 The Evaluation of the Sampling Overhead

In ESPO, sampling consists of sleep phase and active phase. The two phases are carried
out alternately, which makes the sampling overhead lower than 10% of the program
execution. In Fig. 10, the average sampling overhead of the 9 cases is about 9.5%.

Fig. 8. Performance of SPEC2006 Speedup

Fig. 9. Reduction of Commit Stall ratio
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6 Conclusion

The work applies the hardware performance counter based sampling in the post-link
optimizing system, and optimizes the prefetching of linked data structure. According to
our best knowledge, this is the first work to apply software prefetching optimization
with the help of performance counters on Chinese home-made SW26010 processor.
The prefetching method proposed in this work optimizes legacy code without the
existence of source code. Due to the sampling based feedback technology, and noise
elimination powered by variance analysis on the feedback data, the overhead of the first
sampling is dramatically reduced comparing with the existing software prefetching
technologies on the single core processor. The experiment on SPEC2006 shows that
this work brings impressive performance improvement.

This work prefetches instructions in a static way, which means the prefetching
distance is constant. Therefore, in the periodically variable stride access case, programs
cannot be speeded up as expected. In the future work, an auxiliary-thread based
prefetching will be deployed on multi-core SW26010 processor to support more
flexible optimization. The other way to enhance the current work is to try some another
optimizations, such as reducing DTLB miss, branch optimization, and so on, to squeeze
more and more performance benefits with the help of the hardware performance
counters of SW26010 processors.
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Fig. 10. Overhead of sampling

64 H. Wei et al.



www.manaraa.com

References

1. Manikantan, R.: Performance oriented prefetching enhancements using commit stalls.
J. Instr. Level Parallelism 13, 1–28 (2011)

2. Mowry, T.C.: Tolerating latency through software-controlled data prefetching, Ph.D. thesis.
Stanford University, March 1994

3. Bernstein, D., Cohen, D., Freund, A., Maydan, D.E.: Compiler techniques for data
prefetching on the PowerPC. In: Proceedings of the 1995 International Conference on
Parallel Architectures and Compilation Techniques, June 1995

4. Chilimbi, T.M., Hirzel, M.: Dynamic hot data stream prefetching for general-purposes
programs. In: Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 2002

5. Wu, Y., Serrano, M., Krishnaiyer, R., Li, W., Fang, J.: Value-profile guided stride
prefetching for irregular code. In: Horspool, R.Nigel (ed.) CC 2002. LNCS, vol. 2304,
pp. 307–324. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45937-5_22

6. Luk, C.-K., Muth, R., Patil, H., Lowney, P.G., Cohn, R., Weiss, R.: Profile-guided post-link
stride prefetching. In: Proceedings of 2002 International Conference on Supercomputing,
pp. 167–178, June 2002

7. Zou, Q., Li, X.F., Zhang, L.B.: Runtime engine for dynamic profile guided stride
prefetching. J. Comput. Sci. Technol. 23(4), 633–643 (2008)

8. Adl-Tabatabai, A.R., Hudson, R.L., Serrano, M.J., Subramoney, S.: Prefetch injection based
on hardware monitoring and objects metadata. In: Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation (2004)

9. Lu, J., Chen, H., Yew, P.-C., Hsu, w.-C.: Design and implementation of a lightweight
dynamic optimization system. J. Instr. Level Parallelism 6, 1–24 (2004)

10. Beyler, J.C., Clavss, P.: Performance driven data cache prefetching in a dynamic software
optimization system. In: Proceedings of the 36th International Conference on Supercom-
puting, pp. 202–209 (2007)

11. Luk, C.-K., Muth, R., Patil, H., Cohn, R., Lowney, G.: Ispike: a post-link optimizer for the
intel itanium architecture. In: Proceedings of the International Symposium on Code
Generation and Optimization (2004)

12. Collins, J., et al.: Speculative precomputation: long-range prefetching of delinquent loads.
In: Proceedings of the International Symposium on Computer Architecture, July 2001

13. Kamruzzaman, Md., Swanson, S., Tullsen, D.M.: Inter-core prefetching for multicore
processors using migrating helper threads. In: ASPLOS 2011, 5–11 March 2011

14. Mehta, S., Fang, Z., Zhai, A., Yew, P.-C.: Multi-stage coordinated prefetching for present-
day processors. In: ICS 2014, pp. 73–82 (2014)

15. Weifeng, Z., Calder, B., Tullsen, D.M.: A self-repairing prefetcher in an event-driven
dynamic optimization framework. In: Proceedings of the International Symposium on Code
Generation and Optimization, pp. 50–64. IEEE Computer Society (2006)

16. Qi, F.B., Wang, F., Li, Z.S.: Feedback directed prefetching optimization for linked data
structure. J. Softw. 20(Suppl.), 34 − 39 2009. (in Chinese)

17. Wang, F., Wei, H.M., Qi, F.B.: Prefetching optimization based on profiling compilation.
High Perform. Comput. Technol. 186 (2007). (in Chinese)

18. Zou, Q., Wu, M., Hu, W.W., Zhang, L.B.: An instrument-analysis framework for adaptive
prefetch optimization in JVM. J. Softw. 19(7), 1581–1589 (2008). (in Chinese)

19. Fu, H., Liao, J., Yang, J., et al.: The sunway taihulight supercomputer: system and
applications. Sci. China Inf. Sci. 59(7) (2016)

A Post-link Prefetching Based on Event Sampling 65

http://dx.doi.org/10.1007/3-540-45937-5_22


www.manaraa.com

The Design of Reconfigurable Instruction Set
Processor Based on ARM Architecture

Jinyong Yin1, Zhenpeng Xu1(&), Xinmo Fang1, and Xihao Zhou2

1 Jiangsu Automation Research Institute,
Lianyungang 222061, People’s Republic of China

xuzhenpeng@jari.cn
2 Nanjing University of Post and Telecommunication,

Nanjing 210094, People’s Republic of China

Abstract. In embedded system, performance and flexibility are two of the most
important concerns. To solve the problem of the flexibility of GPP (General
Purpose Processor) and the performance of ASIC (Application Specific Inte-
grated Circuit), an ARM based RISP(Reconfigurable Instruction Set Processor)
architecture is proposed in this paper which adopts partial reconfiguration and
coprocessor mechanism to realize the dynamic online reconfiguration of the
processor instruction. A prototype system of the architecture is implemented on
Xilinx KC705 FPGA and reconfigurable resource management software is
designed and developed for the prototype system. DES encryption/decryption
algorithms are tested with prototype, and the test results show that the archi-
tecture has the both flexibility of GPP and the performance of ASIC, so it has a
wide application prospect.

Keywords: RISP � Partial reconfiguration � Coprocessor
Reconfigurable resource management

1 Introduction

With the rapid development of digital technology and network technology, embedded
system has been widely used in various aspects such as scientific research, engineering
design, military technology, people’s daily life and so on. The rapid development of
embedded technology makes it become an important branch of computer and electronic
technology. So the design and application of embedded processor is the core of
embedded technology, which is paid more and more attention.

The traditional computing mode can be divided into two kinds: GPP mode and
ASIC mode [1]. In the GPP mode, program code can be compiled into a sequence of
processor instructions, and the processor completes the computing task by executing
these instructions. This model is flexible enough that when the function of the com-
puting system is changed, the user only needs to modify the program without altering
the underlying hardware environment. However, the GPP performance is low because
of serialization instruction. In the ASIC mode, specialized hardware integrated circuit is
designed for a particular application to accomplish computing tasks. This mode can
provide the optimized data path for the operation of the computing task through the
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special hardware design, and support the parallel execution of multiple operations, so
can achieve the best computational performance. However, the development period of
ASIC is very long, the development cost is too high, and the function is single, which
can’t adapt to the various computing requirements.

In order to balance the performance and flexibility, reconfigurable computing
technology based on programmable logic devices was developed and applied to the
design of the RISP [2]. RISP can make use of the hardware programmability of
reconfigurable logic devices to customize the optimal instruction for different appli-
cation features, so as to meet the different application requirements of embedded field
effectively [3–6].

The research of RISP is a hotspot in the field of processor design and processor
architecture, and is regarded as the next generation processor architecture. Beeck
studied a configurable RISP model in paper [7] and in the model, different constraint
requirements of RISP can be realized by designing spatial search method. The Xirisc
studied in paper [8] is a loading/storage architecture in which all data accesses are
carried out through shared register files and use only very simple two extension
instructions. The RT-RISP in paper [9] regards each instruction as an independent
module which can be dynamically swapping in and out according to the requirement of
the current running application through the support of partial reconfigurable technol-
ogy. Thus the processing performance is improved. The Molen in paper [1] is different
from that of most RISP, it does not need to modify the processor core to support
reconfigurable logic, nor does it use the method of hardware and software collaborative
design. In paper [10], the hardware reconfiguration process is used as part of the
processor design, and the computational task applied to the reconfigurable logic is
regarded as atomic operation, which is realized by the form of reconfigurable micro-
code.

2 RISP Architecture

The general RISP hardware architecture is shown in Fig. 1. Logically, a RISP chip is
divided into two parts: the basic processor core and the reconfigurable logic. The
architecture of the basic processor core is similar to that of the traditional processor. It
belongs to the fixed part of the RISP and is used to execute the processor instruction
which provides the software programmability for the system application. At the same
time, the processor core as the main control part, manages the entire RISP application
processing process. The design of the internal architecture of the reconfigurable logic
relies on the specific application performed on the RISP. The design of RISP hardware
architecture includes two aspects: the design of reconfigurable logic itself and the
interface design of reconfigurable logic and other components in the RISP.
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3 Hardware Design of RISP

Based on the existing ARM processor core and coprocessor interface, a RISP prototype
is constructed on the Xilinx Kintex 7 FPGA Development Board with partial recon-
figurable technology. The prototype mainly includes the basic processor, the recon-
figurable instruction interface and the online configuration circuit and so on.

The block diagram of RISP is shown in Fig. 2, which mainly includes processor
core, AHB bus, clock and reset circuit, DDR3 memory controller, SD card controller,
ESRAM, ICAP reconfigurable module, APB Bus, DMA controller, timer, serial con-
troller, interrupt controller and other modules.

Register File

ID/EXE Reg

Processor
Functional Unit

EXE/MEM Reg

Processor Core

Interface

Configurable
Memory

RFU1 RFUn...

MUX

Reconfigurable Logic

Fig. 1. The hardware architecture diagram of general RISP

Fig. 2. The block diagram of RISP
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3.1 Basic Processor Design

The basic processor uses the 32-bit ARM11 soft core, which has the instruction, the
data and the system bus respectively, and they all use the AHB bus interface. The
processor may read, write and configure each peripheral through AHB MATRIX. The
design of basic processor mainly includes the design of clock reset circuit, AHB Bus
and DDR3 controller.

The block diagram of clock tree is shown in Fig. 3.The input source of the clock is
the 200 MHz double along clock (sys_clk_p/sys_clk_n) which is brought by FPGA
Development Board. The 200 MHz memory controller clock (CLK_PLL), 800 MHz
double along DDR clock (clk_mem_pll/clk_rd_base) and 200 MHz reference Clock
(clk_ref) are output by the FPGA internal PLL. Further from the CLK_PLL clock to get
the bus clock (BUS_CLK) and the processor core clock. Since the DDR3 has a min-
imum frequency requirement, it works with the processor and peripherals at different
frequencies, using asynchronous design between the processor and the memory to
ensure normal data transmission.

The reset source of the system comes from the InReset key of the Development
Board, The DDR controller is initialized after power up, and the reset signal is sent to
the Reset module when the DDR initialization is completed, then the processor and
other peripherals come into work state.

The main system bus is AHB BUS MATRIX, and the architecture is shown in
Fig. 4. Four master ports and six slave ports are configured. The master ports are used
to connect the ARM core and the DMA controller, and the slave ports are used to
connect the APB bus and other peripherals.

The address of each device in the system is shown in Table 1 and the address in the
table is a physical address and can be accessed directly (Table 2).

Fig. 3. The clock tree
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3.2 Reconfigurable Instruction Interface

The reconfigurable instruction unit communicates and collaborates with the master
processor in a coprocessor manner. It mainly includes reconfigurable instruction
interface module and reconfigurable instruction function module. The reconfigurable
instruction function module is user-defined instruction function module, which can be
dynamically loaded by partial reconfiguration circuit.

The logical relationship of the main processor core, the reconfigurable instruction
interface and the reconfigurable instruction functional unit is shown in Fig. 5. The
reconfigurable instruction interface adopts arm coprocessor mechanism, which is the
interface between the reconfigurable instruction unit and the processor core to do the
instruction decoding and data transmission. The main function of reconfigurable
instruction interface is to parse the coprocessor interface signal from the processor core
and complete the interaction with the processor core data.

Fig. 4. Matrix bus structure

Table 1. Address assignment.

Device Start address End address

DDR 0x50000000 0x8fffffff
Interrupt controller 0x40000000 0x40000fff
Timer 0x40003000 0x40003fff
UART 0x40004000 0x40004fff
DMAC 0x11000000 0x11ffffff
SDIO 0x10000000 0x10ffffff
ESRAM 0x00000000 0x0003ffff
HWICAP 0x4000c000 0x4000cfff

Table 2. Interrupt vector ID.

Device Vector ID

UART 56
Timer 62
DMAC 61
SDIO 60
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The reconfigurable instruction interface module, shown in Fig. 6, includes data
FIFO, instruction FIFO, decoding logic, execution logic and so on. Data and instruction
FIFO are used to storage data and instruction queue respectively. The instruction queue
is checked whether it is a coprocessor instruction when is pushed. If it is a coprocessor
instruction, it is pushed, otherwise, it is discarded. The decoding logic decodes the
instructions in FIFO, and transmits the operation code to the execution module.

3.3 Design of Reconfigurable Instruction Configuration Circuit

Reconfigurable instruction dynamic configuration module is shown in Fig. 7. In this
system, the reconfigurable function is realized by the Hwicap module using partial
reconfigure technology of Xilinx Company. The Hwicap module can be regarded as the
internal configuration interface of the APB protocol in FPGA, which mainly includes
the sequence conversion of the APB protocol to the ICAPE2 interface. The ICAPE2
provides a 32-bit configuration interface in which the data are converted by bit and sent
to the ICAP module.

Fig. 5. The logic relation of processor core, reconfigurable instruction interface and reconfig-
urable instruction function unit

Fig. 6. Reconfigurable instruction interface module
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4 Design of Management Software

There are significant differences between the architecture of reconfigurable processors
and the common processor architecture, which require the improvement of existing
management software, mainly operating systems. Based on existing Linux operating
systems, reconfigurable resource management, hybrid task scheduling and reconfig-
urable instruction loading are the redesigned.

4.1 Reconfigurable Resource Management

The task scheduler and reconfigurable resource manager introduce the reconfigurable
instruction preconfigured mechanism and the caching mechanism respectively in order
to reduce the reconfiguration overhead and reduce the influence of reconfigurable
instruction configuration time on system performance. The reconfigurable instruction
preconfigured algorithm predicts the reconfigurable instruction to be executed and
configures it to the free slot on the FPGA in advance. When a reconfigurable
instruction completes, the reconfigurable resource manager does not physically delete
the reconfigurable instruction immediately, but simply marks the slot of the reconfig-
urable resource it occupies, indicating that it is available. If the reconfigurable
instruction is called again, simply cancel the tag without reconfiguring it.

The reconfigurable resource can only be in four states, and the state transition is
shown in Fig. 8:

• Blank state: Resource not yet occupied.
• Configuration state: The resource is configuring now.
• Run state: The reconfigurable instruction is executing.
• Cache state: The reconfigurable instruction is configured and is not executed or it is

complete and is not deleted.

The management of reconfigurable resources requires the management of the state
transitions of these reconfigurable slots. When the reconfigurable instruction are called,

Fig. 7. The block diagram of reconfigurable instruction configuration module
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they are allocated the most appropriate resources, refer to as the state of these resources
and the resource requirements of the hardware functions.

4.2 Reconfigurable Instructions Loading

The reconfigurable instruction configuration is the process of loading a reconfigurable
instruction configuration file onto the FPGA while the system is still running. Because
of the configuration file size, a configuration algorithm is designed whose flow graph is
shown in Fig. 9. The configuration algorithm first opens the configuration file, reads
the configuration file to a cache buffer, determines the location of the configuration data
and the number of data by analyzing the configuration file structure, and determines the
number of loops and remaining quantities based on the amount of configuration data. It
opens the configuration device and writes the start configuration sequence to the
configuration device. The start configuration sequence is a special string which indi-
cates that the following data is configuration data. The following process is to write
configuration data to the configuration RAM in the FPGA, and finally to write end
configuration sequence. The end configuration sequence is also a special string which
indicates that the configuration data is terminated and the configuration device and
configuration file is closed.

Configuration Cache

Blank Run

St
ar
tco

nf
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ur
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n

Complete
configuration

Physical delete

C
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plete

Schedule

Reconfiguration

Complete
configuration

Fig. 8. Reconfigurable resource state
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5 Experiments

5.1 Demo Environment

Demo environment includes hardware platform and system software.
Hardware platform is a Xilinx KC705 FPGA Development Board, as shown in

Fig. 10. When the system is powered, the RISP is configured from the ROM. The
system software includes the developed operating system, configuration program, and
demo software which support instruction reconfiguration.

Construct the environment: (1) Connect the KC705 FPGA Development Board to
the development workstation via serial port or USB download line and download the
image to the FPGA. (2) Insert the system boot SD card into the SD card slot of the
FPGA Development Board. (3) Reset the FPGA Development Board. (4) The infor-
mation as shown in Fig. 11 is displayed on the development workstation serial terminal
which indicates that the system software started successfully.

Start
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Computing data 
size

Open config device
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Fig. 9. The flow of reconfigurable instruction configuration
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Fig. 10. Hardware platform

Fig. 11. System software start information
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5.2 Performance and Function Testing

The system reserves two reconfigurable slots that can be configured with two recon-
figurable instruction units. You can use the./reconfigure xx.bit command to configure
the instruction unit and query the reconfigurable slot state by the./configure -i com-
mand, as shown in Figs. 12 and 13.

With DES encryption/decryption algorithms as the typical application, the RISP
prototype, the main processor in this system and Intel Core I5 processor which is the
current mainstream processor are tested. 64bit data is encrypted and decrypted 50000
times by RISP, ARM processor and Intel Core I5 processor respectively, and the
execution time is 0.38s, 1850s and 2.5s. RISP is faster 4868 times and 6.5 times than
ARM processor and Core I5 processor. The test results are shown in Table 3.

Fig. 12. Reconfigurable instruction configuration process

Fig. 13. Reconfigurable zone state

Table 3. Accelerated ratio table.

Item RISP ARM processor Core I5 processor

Execution time 0.38s 1850s 2.5s
RISP speed UP 1 4868 6.5
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The test process is divided into three parts:

1. Use the LDC instruction to load the data in memory into the coprocessor registers.
2. Use the CDP instruction to send the operation code, where 0 represents encryption

operation and 1 represents the decryption operation.
3. After a fixed-period delay, the result in the coprocessor registers is read into

memory and the encryption/decryption operation is completed.

6 Conclusion

Based on the ARM processor and Linux operating system, a reconfigurable computing
system is developed in this paper and it is verified in FPGA hardware platform.
Because a soft ARM core is used in the system, the processor frequency is only
100 MHz, so the overall performance is not high. To further improve the system
computing performance, the future work will be the hardcore or development of SOC
chip.
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Abstract. This paper presents a stateful forward-edge CFI mechanism
based on a novel use of the Intel Memory Protection Extensions (MPX)
technology. To enforce stateful CFI policies, we protect against malicious
modification of pointers on the dereference pathes of indirect jumps or
function calls by saving these pointers into shadow memory. Intel MPX,
which stores pointer’s bounds into shadow memory, offers the capability
of managing the copy for these indirect dereferenced pointers. There are
two challenges in applying MPX to forward-edge CFI enforcement. First,
as MPX is designed to protect against every pointers that may incurs
memory errors, MPX incurs unacceptable runtime overhead. Second, the
MPX defense has holes when maintaining interoperability with legacy
code. We address these challenges by only protecting the pointers on
the dereference pathes of indirect function calls and jumps, and making
a further check on the loaded pointer value. We have implemented our
mechanism on the LLVM compiler and evaluated it on a commodity Intel
Skylake machine with MPX support. Evaluation results show that our
mechanism is effective in enforcing forward-edge CFI, while incurring
acceptable performance overhead.

Keywords: Code-reuse attacks · Control-flow integrity
Shadow stack · Shadow memory · MPX · LLVM

1 Introduction

Code-reuse attacks (CRA) [1–5] exploit memory corruption vulnerabilities to
redirect the intended control-flow of applications to unintended but valid code
sequences. As these attacks require no code injection, they can defeat the defenses
in mainstream computing devices [6], such as StackGuard [7], DEP [8] and
ASLR [9]. Control-flow integrity (CFI) [10,11] is considered as a general and
promising method to prevent code-reuse attacks. CFI restricts the control trans-
fers along the edges of the programs’s predefined Control-Flow Graph (CFG),
c© Springer Nature Singapore Pte Ltd. 2018
C. Li and J. Wu (Eds.): ACA 2018, CCIS 908, pp. 79–94, 2018.
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which is constructed by statically analyzing either the source code or the binary
of a given program. The control-transfers caused by indirect jumps and function
calls are corresponding to forward-edge control-flow. Backward-edge control-flow
represents transfers caused by ret instructions.

Shadow stack is considered as an essential mechanism to enforce stateful
backward-edge CFI policies [10,12]. It keeps track of the function calls by stor-
ing the return addresses in a dedicated protected memory region. Most of the
forward-edge CFI enforcement technologies follow a two-phase process. Dur-
ing the analysis phase, all the legal targets of each indirect control-transfer are
abstracted from the protected program’s CFG. The enforcement phase ensures
that each control-transfer target belongs to the legal targets set. However, even
the context/field sensitive static analysis still over-approximates the targets of
indirect control-transfers [12–14]. Recent researches show that just the intended
legal targets are enough for a successful attack [12–14]. The weakness of current
forward-edge CFI mechanisms is that conformance to the CFG is a stateless pol-
icy [12]. To conduct control-flow hijack attacks without violate the CFG restric-
tion, attackers still have to maliciously overwrite (craft) the targets of indirect
control-transfers [12,14]. Malicious modifications can be detected by verifying
the runtime control-flow information [15,16].

In this paper, we introduce a novel stateful forward-edge CFI mechanism.
Unlike the traditional CFI mechanisms, which check only whether each control-
transfer target belongs to legal targets set [10,11,17–20], our mechanism checks
the integrity of all pointers on the dereference pathes of indirect jumps and
function calls. We call the pointers on the dereference pathes of indirect jumps
and function calls as control-transfer related pointers. To support this method,
we protect against malicious modification on control-transfer related pointers
by saving these pointers in a disjoint shadow memory1 when they are stored
into memory. When a control-transfer related pointer is dereferenced, its copy
is loaded from the shadow memory and compared with itself. If the integrity
check passes, no action is taken; if the check fails, the program control transfers
to the error handler. This process is similar to shadow stack. To facility the
copy management and integrity checking, we implement our mechanism based
on a new, commercially available hardware feature called Memory Protection
Extensions (MPX) on Intel CPUs [24–26]. In MPX, every pointer stored in
memory has its associated bounds stored in a shadow memory, which is only
accessible via bndstx and bndldx instructions.

In particular, we make the following contributions:

– We design a stateful forward-edge CFI mechanism, which protects the control-
transfer related pointers by saving a copy into shadow memory. When a
control-transfer related pointer is dereferenced, the copy is used to check
its integrity similar to the shadow stack.

– Intel MPX is reused to manage the copies of control-transfer related pointers.
We implement our mechanism on the LLVM compiler framework. A compiler

1 Shadow memory is a memory space paralleling the normal data space [21–23].
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pass is developed to identify the control-transfer related pointers and instru-
ment integrity check codes for them. A runtime library is developed to facility
the MPX hardware initialization and check code instrumentation.

– We evaluated our mechanism on a commodity Intel Skylake machine with
MPX support. The evaluation shows that our mechanism is effective in enforc-
ing stateful forward-edge CFI, while incurring acceptable performance over-
head.

2 Intel MPX

Intel MPX [24–26] was first announced in 2013 and became available as part
of the Skylake microarchitecture in late 2015. The purpose of Intel MPX is
to protect against memory errors and attacks. When Intel MPX protection is
applied, bounds-check codes are inserted to detect out-of-bounds accesses. To
realize this goal, each level of the hardware-software stacks is modified to support
the Intel MPX technology.

At the hardware level, new MPX instructions [25] are introduced to facilitate
the bounds operations. These instructions are summarized in Table 1. To reduce
the register pressure on the general-purpose registers (GPRs), MPX introduces
a set of 128-bit bounds registers. The current Intel Skylake architecture provides
four bounds registers named bnd0-bnd3. Each of the bounds registers stores a
lower 64-bit bound in bits 0–63 and an upper bounds in bits 64–127. MPX
also introduces #BR exception to facilitate the exceptions thrown by the bounds
operations.

Table 1. Intel MPX instruction summary

Intel MPX Instruction Description

bndmk bndx, m create LowerBound and UpperBound

bndcl bndx, r/m check the pointer value in GPR/memory against the lower

bndcu bndx, r/m check the pointer value in GPR/memory against the upper

bndmov bndx, bndx/m move pointer bounds from bnd/memory to bnd

bndmov bndx/m, bndx move pointer bounds from bnd to bnd/memory

bndldx bndx, mib load pointer bounds from memory

bndstx bndx, mib store pointer bounds to memory

The memory of bounds and #BR exceptions are managed by the OS. Bounds
are stored in shadow memory, which is dynamically allocated by the OS in
a similar way of paging. Each pointer has an entry in a Bounds Table (BT),
which is comparable to a page table. The addresses of BTs are stored in a
Bounds Directory (BD), which corresponds to a page directory in analogy. As
the bounds registers are not enough for real-world programs, bounds have to
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be stored/loaded to/from BT by the bndstx/bndldx instructions. When a BT
does not exist, the CPU raises #BR and traps into the OS. Then the OS allocates
a new BT for the bounds. Furthermore, the OS is in charge of bounds check
violation.

At the compiler level, new MPX transformation passes are added to insert
MPX instructions to create, propagate, store and check bounds. Additional run-
time libraries provide initialization/finalization routines, statistics and debug
info, and wrappers for functions from standard C libraries [28]. Until now, both
GCC and ICC compilers have native support for Intel MPX [24,26]. The LLVM
compiler only adds the MPX instructions and bounds registers to its Back-
end [29].

There are at least two challenges in applying MPX to implement our mecha-
nism. First, MPX is designed to protect every pointers that may incur memory
errors. To enforce our mechanism, we have to identity the control-transfer related
pointers before the instrumentation. Second, MPX utilizes the bndldx instruc-
tion to load bounds from the BT. When the content of the index register of
bndldx instruction matches with the pointer value stored along with bounds
in the BT, the destination MPX register is updated with the loaded bounds.
However, if a mismatch is detected, the destination MPX register is updated as
always-true (INIT) [24–26]. This creates holes in MPX defense. Thus, we need
to address the problem of how to check the integrity of control-transfer related
pointers based on the loaded bounds.

3 Threat Model

In this paper, we only focus on user-space forward-edge CFI and assume that
the backward-edge CFI has been efficiently enforced by previous solutions. Since
bounds memory and #BR exceptions are managed by the OS, we assume adver-
saries have no control over the OS kernel. This assumption prevents adversaries
from directly tampering with our enforced protection. We assume that (1) attack-
ers can not control the program loading process; (2) the system deploys the mem-
ory protection, which forbids code section and read only data to get written at
run time, and forbids a memory region to be writable and executable at the
same time. These assumptions ensure the integrity of the loaded program and
prevent code injection attacks. We assume attackers can arbitrary read appli-
cation’s code, and has the full control over the program’s stack and heap. In
other words, attackers have the following capabilities: (1) attackers can launch
information attacks and defeat the protection of ALSR; (2) they can corrupt
control data such as return address and function pointers. Our assumptions are
as strong and realistic as prior work in this area.

4 Stateful Forward-Edge CFI

The goal of this paper is to enforce stateful forward-edge CFI mechanism, which
is similar to shadow stack [10,12] and incurs acceptable runtime overhead. In this
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section we set up a stateful forward-edge CFI model, and discuss the enforcement
method based on this model.

To check the integrity of forward-edge control-flow, we need to understand
the low level process of control-flow transfers caused by indirect jumps and func-
tion calls. A function call through pointer dereference is shown in Fig. 1(a). The
source code is in black and the disassembly is in blue. At line 8, a pointer, which
is a return value from malloc, is assigned to p1. At lines 11–12, the execution
makes p2 point to the address of p1. At lines 15–17, the address of function
func1 is assigned to a structure member sfunc ptr, which is found by dereferenc-
ing pointer p2 twice. At that program point, the pointer relationships holding
between the variables and functions are illustrated in Fig. 1(b). At lines 19–23,
function func1 is called by dereferencing pointer p2. We call this dereference
path as a Dereferenced-Pointers-Flow (DPF), which is analogous to a linked
list. DPF consists of a series of elements (such as structures, arrays, pointers).
Each contains (or is) a pointer to a element containing its successor. We call
these pointers as control-transfer related pointers. The last level control-transfer
related pointer points to a function or a address.

Fig. 1. Stateful forward-edge CFI model

For the whole program, the pointer relationships related to pointer p2 can be
abstracted by statically analyzing. As shown in Fig. 1(c), the relationships can
be represented as a tree. Every node contains (or is) a control-transfer related
pointer. The root node is pointer p2, and the leaf nodes are functions with
the same type. There are multiple pathes (indicated as dotted lines) from p2
to the leaf nodes. But there are only one DPF (indicated by the shadow blue
arrow) at moment T1. If we can make sure that every pointer on the DPF is
trusted, we call this forward control-flow is integrity. As shown in Fig. 1(a), the
DPF is selected by assigning proper value (e.g., location of a function, return
pointer from malloc, or one address in the stack) to the control-transfer related
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pointer. If any pointer in the code-pointer tree is overwritten by attackers, the
pointer dereference will use another DPF, and the control-flow transfers to target
controlled by attackers. We come exactly to the conclusion that the correctness
of function call or jump through a pointer dereference depends on the integrity
of the DPF at a moment. A pointer dereference satisfies the integrity property
iff its value equals to the last legal update. We say an indirect control-transfer
satisfies the CFI property iff the DPFs are protected. If all DPFs are protected,
it is sufficient to prevent forward-edge control-flow hijack attacks.

For fine-grained CFI (such as IFCC and VTV [19]) mechanisms, they prevent
control-flow hijack attacks by ensuring that the target address of each indirect
branch is within the predefined targets set. The targets sets are computed by
static program analysis. Thus func0 -func3 are all valid targets for the control
transfer at line 23 in Fig. 1 at a moment. Actually, there are only one dereference
path at a moment. For example, when the program in Fig. 1(a) executes at
line 23, there is only one DPF as shown in Fig. 1(c) at moment T1. The false
negative of fine-grained CFI mechanisms can be attributed to their stateless
target checking. In other words, the target of a control transfer depends on the
DPF which is selected by the control-transfer related pointers at a moment.

5 Implementation

We implement our stateful forward-edge CFI mechanism on the LLVM compiler
framework [29]. As shown in Fig. 2, we add an optimization pass (DFI pass)
during the optimization stage, and link the object codes with the runtime library
at the link stage.

Fig. 2. The process of our stateful forward-edge CFI mechanism implementation. It
first identifies the DPF nodes and inserts integrity checking codes by the DPF pass,
and finally links the object codes with the runtime library.

Integrity Check Based on MPX Instructions: The method of checking
the integrity of control-transfer related pointers is shown in Fig. 3. Function
bound set is designed to store the pointers into shadow memory. Function
bound set is designed load the copies of pointers and verify their integrity. The
input of these functions are the location and the value of one pointer. To deal
with the defense holes of MPX (the seconde challenge mentioned in Sect. 2), we
store the pointer value into the lower bound. As shown in Fig. 3(a), the function
bound set creates bounds at line 4. Since we set the base register of bndmk
instruction as ptr value, ptr value is stored in the lower bound bnd0.LB.
As shown in Fig. 3(b), when we call bound assert to check the integrity of
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ptr value loaded from ptr, we firstly load its bounds to bnd0 at line 15. Then,
we move the bounds from bnd0 to the memory space indexed by the pointer
ptr tmp at line 17, and assign the lower bound to ptr rst at line 18. Finally, we
compare the loaded pointer value ptr value with the lower bound at line 22. If a
mismatch is detected between them, the control transfers to the error lable()
function.

Fig. 3. Integrity checks based on MPX instructions.

Runtime Library: As described in the above paragraph, the bound set()
function and bound assert() function are added as intrinsic function calls. We
implement these functions into a runtime library. Besides these integrity checking
functions, we also add some functions to initialize the MPX hardware at program
startup. These functions are migrated from the libmpx library of GCC compiler.
We compile these functions into a object file and link with this object file at the
link stage.

DPF Pass: We implemented the static analysis and instrumentation as an opti-
mization pass. The optimization pass operates on the LLVM intermediate rep-
resentation (IR), which is a low-level strongly-typed language-independent pro-
gram representation tailored for static analyses and optimization purpose [29].
The LLVM IR is generated from the C/C++ source code by clang, which pre-
serves most of the type information that is required in our analysis. When
our stateful mechanism is applied, the DPF pass works as the following: (1)
DPF pass performs type based static analysis to identify any pointers that are



www.manaraa.com

86 J. Zhang et al.

control-transfer related. As shown in Fig. 1, control-transfer related pointers are
pointers to functions, pointers to struct or other composite types which con-
tain control-transfer related pointers. This method is similar to CPI [40]. (2)
Once the control-transfer related pointers are identified, the DPF pass creates
appropriate function calls to the intrinsic functions. When a value is assigned a
control-transfer related pointer, a call to bound set is created before the store
instruction. Function bound set saves the pointer’s value in the shadow memory
in the form of bounds. When a control-transfer related pointers is used2, a call to
bound assert is created before this instruction. Function bound assert check
the pointer’s integrity before being used. An example of instrumented codes are
shown in Fig. 4.

6 Evaluation

6.1 Effectiveness Evaluation

To evaluate our mechanism’s effectiveness, we use the RIPE benchmark [30]
which is developed to provide a standard way of testing the coverage of a defense
mechanism against memory errors. This program contains 850 attack forms. Our
experiment is on the Ubuntu 16.04. To make more attacks work, we disabled the
ASLR and compiled it without stack protection and data execution protection.
Even though, many exploits failed because of built-in system protection mecha-
nisms, such as changes in the runtime layout, as well as compatibility issues due
to the usage of newer-version libraries. At last, 64 attacks works. These attacks
can be divided into forward-edge control flow hijacks and backward-edge con-
trol flow hijacks. After implementing our stateful forward-edge CFI mechanism,
only 6 attacks work. These attacks belong to backward-edge hijack attacks. It is
shown that our mechanism is effective in forward-edge control flow enforcement.

The above evaluation is based on the assumption that the copies of control-
transfer related pointers are unmodified by attackers. Actually, as the shadow
memory of Intel MPX is allocated in the user address space, the Bounds Tables
could be found and corrupted by memory corruption vulnerabilities. Since
attackers have to modify the control-transfer related pointers in two distinct
locations, checking for a match renders an attack much harder [6]. Thus, our
mechanism with unprotected shadow memory still raises the bar of code-reuse
attacks.

6.2 Performance Evaluation

To evaluate the performance overhead of our protection mechanism, five appli-
cations are selected from the SPEC CPU2006 benchmark suit [31]. As shown in
Table 2, these applications have different fractions of instrumented memory oper-
ations. Their allocated bounds tables and instruction overhead are also shown
2 The control-transfer related pointers can be used to call functions, used as function

parameters, used to load pointers and so on.
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in Table 2. These information is obtained by the profiler tool Perf [32]. We re-
compile these applications with Low Level Virtual Machine (LLVM) [29] to apply
our stateful protection.

We ran our experiments on an Intel Xeon(R) E3-1280 v5 with 8 cores 3.7 GHz
in 64-bit mode with 64 GB DRAM. As shown in Fig. 5a, the y-axis shows that
the runtime overhead normalized to the baseline, i.e., the native applications
without protection. In average, our protection mechanism incurs 9.1% runtime
degradation. The worst-case is 28.1% for h264ref. On the one hand, the per-
formance overhead can be attributed to the increase in number of instructions
executed in a protected application. Comparing Fig. 5a and the IO column in
Table 2, there is a strong correlation between them. As expected, hmmer, which
has the least instructions increase, has ignorable performance overhead. h264ref,
which has the most instructions increase, has the worst performance overhead.
On the other hand, the performance overhead can be partially attributed to the
lower hit rate. Figure 5b shows the impact of our instrumentation on the data
cache hit rate. As seen from the figure, most of protected applications have lower
data cache hit rate. The exception is hmmer, which has ignorable instrumented
memory operations.

Table 2. Statistics for the selected applications: FMON represents the fraction of
memory operations instrumented; NBT represents the bounds tables allocated for each
application; IO represents the instruction overhead normalized to the baseline.

FMOI NBT IO

bzip2 0.25% 1 9.49%

gcc 2.54% 129 17.12%

hmmer ≈ 0 1 ≈ 0

h264ref 2.42% 18 33.83%

sphinx3 0.06% 2 0.20%

7 Related Work

7.1 Control-Flow Integrity

CFI is proposed by Abadi et al. in 2005 [10]. It restricts the control-transfers
along the edge of the program’s predefined CFG. The initial implementation of
CFI instruments software with runtime label checks to ensure the source and
destination of indirect control transfer have the same label. As frequently called
function might have a large set of valid target addresses, CFI is generally coupled
with a protected shadow stack to ensure backward-edge CFI [12]. Researchers
mainly focus on two CFI enforcement techniques: software-based and hardware-
assisted mechansims.
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Fig. 5. (a) Performance overhead of our stateful forward-edge CFI mechanism. (b)
CPU cache behavior of baseline (bar on the left) and our stateful forward-edge CFI
mecahnism (bar on the right).

Software-Based Approaches. Software-based CFI approaches enforce the
CFI policies by instrument the source code or legacy binaries. This can be done as
part of a compiler optimization pass or binary rewriting. For the compiler-based
approaches [15,19,20,34–36], the type information is used to abstract the indirect
control transfer targets. Now, the LLVM includes an implementation of a number
of CFI schemes [33]. Ge et al. [20] leveraged LLVM to enforce fine-grained CFI for
FreeBSD and MINIX kernels. The binary rewriting approaches [10,17,18,37–39]
derive the CFI policy directly form binaries and insert checks for CFI policies
enforcement. While software-based approaches are effective in enforcing CFI,
they have to make a tradeoff between efficiency and precision.

Hardware-Assisted Protection. To reduce the performance overhead of
software-based approaches, several hardware-assisted CFI approaches have been
designed. New CFI instructions and hardware-based shadow stack are intro-
duce to accelerate label checking on each indirect branch [41,41–43]. Intel have
added the CFI instructions and shadow stack into their Instruction Set Archi-
tecture (ISA) [44]. kBounder [45] and PathARmor [46] utilize the Last Branch
Record (LBR) feature to build CFI defense. CFIMon [47] leverages Branch Trace
Store (BTS) to record control transfers and implement CFI checks. However,
these approaches only implement coarse-grained security policies. To enforce
fine-grained CFI, CFIGuard [48] proposes to combine the LBR with the Per-
formance Monitoring Unit (PMU). By program the PMU to trigger an inter-
rupt when the LBR stack is full, CFIGuard could check all executed indirect
branches. However, CFIGuard incurs much runtime overhead because of the fre-
quently generated interrupts. FlowGuard [49], GRIFFIN [50] and PT-CFI [51]
leverage the Intel Processor Trace (PT) to record the execution trace of a mon-
itored program and perform online control-flow checks based on the offline CFI
policies. One advantage of these work is that they are capable of enforcing a vari-
ety of stateful CFI policies over unmodified binaries. Comparing to the above
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hardware-assisted mechanisms, our mechanism reuses the MPX to enforce state-
ful forward-edge CFI, which do not need to construct the CFG and offline trains.

7.2 Code Pointer Integrity

Memory errors are the root of control-flow hijack attacks. Though many of mem-
ory safety mechanisms have been designed, they have not been widely adapted
by industry for their high runtime overhead. Kuznetsov et al. [40] propose the
Code Pointer Integrity (CPI) mechanism based on the observe that integrity
guarantee of code pointers is sufficient to prevent control-flow hijack attacks.
They implement CPI by storing sensitive pointers in an isolated memory region,
and further use the runtime information (such as bounds of pointers) to check the
validation of pointer dereference. There are a large body of research leveraging
cryptography to provide security for code pointers. Tuck et al. [52] protect the
pointer by encrypting the stored value. Their work is designed to protection from
buffer overflow and cannot prevent code-reuse attacks. To prevent code-reuse
attacks, Cryptographic CFI (CCFI) [15] uses MACs to check the integrity of
indirect control-transfer targets. As the MACs contain more runtime information
than the encrypted pointers, CCFI provides CFI protection efficiently. Recently,
ARM announced the ARMv8.3-A architecture added a pointer integrity mech-
anism, called Pointer Authentication (PA) [53]. Similar to CCFI, PA use short
cryptographic MACs to verify the integrity of pointers. Essentially, we enforce
forward-edge CFI by guarantee the integrity of control-transfer related pointers.
Different form these CPI mechanisms, we compares one control-transfer related
pointer with its copy to verify its integrity. This method is similar to shadow
stack. Furthermore, we leverage Intel MPX to facility the integrity checking.

8 Conclusions

This paper presents an efficient stateful forward-edge mechanism based on Intel
MPX. We guarantee the integrity of control-transfer related pointers by storing
these pointers into shadow memory, which is managed by OS and accessed by
the MPX bndstx and bndldx instructions. To implement our method based on
MPX, we design a LLVM pass to identify the control-transfer related pointers
and instrument the source code. We also develop a runtime library to facility
the instrumentation and initialize the MPX hardware. Our evaluation results
show that our method is effective in enforcing forward-edge CFI, while incurring
acceptable performance overhead.
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Abstract. Emerging biomedical applications generally work at
low/medium frequencies and require ultra-low energy. Near threshold
processors with near threshold caches are proposed to be the computing
platforms for these applications. There exists a large design space for
multi-level near threshold cache hierarchies, which requires a fast design
space exploration framework. In this paper, we first propose three dif-
ferent two-level near threshold cache architectures with different per-
formance and energy tradeoff. Then, we describe the design space of a
two-level near threshold cache hierarchy and develop an accurate and
fast analytical design space exploration framework to analyze this space.
Experiments indicate that significant energy saving (59%) on average is
achieved by our new near threshold cache architecture. Moreover, our
analytical framework is shown to be both accurate and efficient.

1 Introduction

Emerging biomedical applications are requiring ultra-low energy dissipation,
such as hearing aids, pace-makers and implantable devices. Luckily, these ultra
low energy biomedical applications are generally running at low/medium fre-
quencies. Ideally, these applications should be self-powered, relying on scaveng-
ing energy from the environment, or at least be sustained by a small battery for
a long period like several years. Such a stringent energy budget constraints the
total system computation power to be less than tens of microwatts, which poses
a great challenge to modern computing architectures and design methodologies.
In short, ultra low energy and low/medium frequency are the two features of
these biomedical applications.

Near threshold processors [3,5,11,13,15,19,20,22,23] have been proposed to
meet the ultra-low energy requirements. They scale their supply voltages VDD
c© Springer Nature Singapore Pte Ltd. 2018
C. Li and J. Wu (Eds.): ACA 2018, CCIS 908, pp. 95–108, 2018.
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along with their operating frequencies. As VDD scales, not only does the pro-
cessor dynamic energy reduce quadratically, but also the processor leakage cur-
rent does reduce super-linearly due to the drain-induced barrier-lowering (DIBL)
effect. Therefore, the total energy dissipation of a processor can considerably be
reduced. Moreover, VDD scaling reduces transient current spikes, hence lower-
ing the notorious ground bounce noise. In contrast to analog circuit design where
lowering the VDD to the near threshold region is generally avoided because of the
small values of the driving currents and the exceedingly large noise, CMOS digital
logic gates can work seamlessly from full VDD to near threshold voltage VT.

Near threshold cache hierarchy is an important part of ultra-low energy pro-
cessor systems. Compared to traditional cache hierarchy that is designed for
performance only, near threshold cache hierarchy is designed for power/energy.
Meanwhile, cache design involves various parameters such as line size, associa-
tivity etc. The design space of caches is significantly expanded when both near
threshold cache design and cache hierarchy are considered. For example, either
L1 or L2 cache can be fabricated to near threshold cache to save energy consump-
tion. Also, the design space of cache hierarchy can not be explored separately,
because the L2 cache access depends on L1 cache access results. Moreover, with
novel near threshold circuit designs, near threshold caches are able to achieve
the same access latency as that of standard caches, but with the trade-off of a
larger silicon area. Thus, given the same silicon area, when it is fabricated to
near threshold cache, the cache size (capacity) will be decreased. All these new
parameters brought by near threshold caches enlarge the already complex design
space of multi-level cache hierarchies and the extended design space of the near
threshold cache requires a fast multi-level cache exploration framework.

In this work, we first propose three two-level near threshold cache archi-
tectures for lower power biomedical applications. The three architectures are
different in use of near threshold cache which results in different tradeoff of per-
formance and energy. Then, we develop an analytical framework for efficient and
accurate exploration of cache hierarchy. The exploration results are the optimal
configurations (cache architecture, design parameters). Experiments show that
our analytical exploration covers all the exact solutions from simulation and new
architectures achieves on average 59% energy saving compared to baseline archi-
tecture. Furthermore, our analytical analysis is shown to be much more efficient
than simulation based approaches.

2 Related Work

Some very interesting prototype chips which function in the sub/near threshold
have been built. Among these chips, the most famous are the 180 mV FFT pro-
cessor in 180 nm CMOS process designed by Alice Wang [20]. Ben Calhoun had
designed a 256 kb 10-T dual port SRAM in 65 nm CMOS process [3]. M.I.T group
and Texas Instruments had jointly announced the newest sub-threshold MSP430
DSP processor with integrated DC-DC converter [11]. An ultra-low energy multi-
standard JPEG co-processor in 65 nm CMOS with sub/near threshold supply
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voltage [13,22,23] has been demonstrated with an ultra low energy dissipation of
1.0 pJ per cycle with a 0.45 V supply voltage working at 4.5 MHz. Near threshold
cache architectures have been used in embedded systems to save power/energy
consumption [5]. However, the optimal cache configuration is determined by
exploring the design space via simulation. The time spent in exploration could
be significantly long due to the huge design space for multiple level caches and
slowness of simulation.

The design space of caches can be explored via both simulation [6,18] and
analytical approaches [7,12,14]. In addition, there are hybrid approaches using
both simulation and heuristics [8,9]. Trace-driven simulation is widely used for
evaluating cache design parameters [18]. Ghosh and Givargis [7] propose an effi-
cient analytical approach which can generate the set of cache configurations that
meet the performance constraints directly. A fast and accurate static analysis
for exploring level one instruction cache is presented in [12,14]. Their technique
achieves high accuracy and speedup compared to the fastest single pass cache
simulator Cheetah [17]. Hybrid approaches are used to explore both single and
multi level cache design space in [8,9]. In their technique, heuristics are proposed
to prune the cache design space and simulation are used to obtain the cache per-
formance number for the reduced design space only. However, hybrid approaches
are still not fast enough, because simulations are still needed.

3 Cache Architecture

We first describe the cache design parameters. The following definition can be
applied to either L1 or L2 cache. A cache memory is defined in terms of three
major parameters: block or line size L, number of sets K and associativity A.
Now the cache size is defined as (K×A×L). A memory block m can be mapped
to only one cache set given by (m modulo K). In addition, we consider least
recently used (LRU) replacement policy in this paper. We also assume that the
block size and total cache size L2 cache must be equal to or greater than the
that of L1 cache [9], respectively. Finally, we are analyzing non-inclusive multiple
level caches [10]. For non-inclusive caches, the following properties hold, (1) a
memory reference is searched in the L2 cache if and only if it is a miss in L1
cache. (2) for every miss at level L, the requested memory block is loaded into
the cache at level L.

For single level instruction cache, its design space includes various line size,
cache sets and associativity. For two-level instruction cache, we can not explore
the instruction cache hierarchy independently, because L1 cache configuration
affects the L2 cache access in non-inclusive multiple level caches. Thus, for two-
level cache, the design space is about the cross product of the design space of each
level. Given a standard cache with size S consisting of N cache configurations
(line size, associativity), when it is fabricated to near threshold cache, the cache
size (capacity) is decreased to S × K, where K < 1, due to the larger cell size
of near threshold cache. Thus, we have to explore another N (roughly) cache
configurations for cache size S ×K too. The design space is further expanded if
near threshold cache is taken into account.
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Fig. 1. Proposed three cache architectures.

We propose three two-level instruction cache architectures for our low power
biomedical applications as shown in Fig. 1. Architecture A is designed to save
energy of L1 cache; Architecture B is designed to save energy of L2 cache;
Baseline is good for performance. Although architecture A and B are designed
for energy saving, they may not always achieve energy reduction. It is because
given the same die size, the fabricated near threshold cache size is smaller than
standard cache. Thus, both architecture A and B may introduce more cache
misses which results in more access to memory. The energy consumed per access
to memory is much more than that of cache access. Thus, energy consumption
may be increased by using architecture A and B.

Now, given a cache configuration, it is associated with two categories of
parameters: architecture type (one of above three) and cache design parameters
(size, block size, etc.) for each level. The design constraints we consider include
both energy consumption and performance. To determine the best cache param-
eters and architectures shown in Fig. 1 for a particular application, the entire
design space has to been explored. For any cache configuration, let (P,E) denote
the corresponding performance and energy consumption. We are only interested
in identifying the set of Pareto-optimal solutions S = {(P1, E1), . . . , (Pn, En)}
that capture the different performance and energy tradeoffs [4]. Each (Pi, Ei) ∈ S
has the property that there does not exist any other cache configuration with
a performance and energy tuple (P,E) such at P ≤ Pi and E ≤ Ei, with at
least one of the inequalities being strict. Let V be the set of performance and
energy tuples corresponding to all cache configurations. Then, for any configu-
ration (Pi, Ei) ∈ V − P are referred as dominated solutions. Furthermore, we
are also interested in the architecture type of the Pareto optimal solutions.

4 Analytical Cache Analysis

4.1 Cache Modeling

Given a memory block, it is mapped to only one cache set. Thus, each cache
set can be analyzed independently. For one cache set, it can be considered as a
fully-associative LRU cache with A cache blocks (A is associativity). Also, for
one cache set, we use cache state to describe cache content and cache state c is
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just a vector < c[1], . . . , c[A] > of length A where c[j] holds the jth most recently
used memory block.

An efficient analytical framework is proposed for rapid and accurate design
space exploration of instruction cache [12,14]. In their work, cache states at each
node of the control flow graph is modelled in a probabilistic manner. This is due
to the fact that a program point can be reached through multiple program paths
leading to a number of possible cache states at that point. Hence, probabilistic
cache state is used to capture the cache contents and probabilistic cache state
is just a set of possible cache states and each cache state is associated with a
probability. The inputs to the analysis is the basic block and control flow edges
counts from which the branch probability and loop bound can be derived. The
analysis involves two phases traversal of the program and the probabilistic cache
state at each program point in the context of entire program is available after
the two phases traversal. Given a probabilistic cache state C and a memory block
access m, the hit probability of m is just the sum of the probabilities of cache
states where m can be found in C. Finally, the cache hit/miss of the entire
program can be derived.

m5 P 1Pr = 1

Probabilistic cache state before m5

2m1
P1

P2

P3

m2
m1

m4
m3

m1
m5

Pr = P1 Pr = P2 Pr = P3

m2

m3
Hit probability of m5 = P3 

Probabilistic cache state after m5

Pr P1 Pr P2 Pr P3

m4 m5
m2

Probabilistic cache state after m5

m5
m4

m5
m1

m5 Pr = P1 Pr = P2 Pr = P3

Fig. 2. An example of probabilistic cache state. ⊥ indicates empty and Pr represents
probability. Probabilistic cache state before m5 contains three cache states, one for
each path. The hit probability of m5 is P3. After accessing m5, probabilistic cache
state is updated correspondingly with m5 as the most recently accessed memory block.

Figure 2 shows an example of probabilistic cache state. Cache is assumed to
be a 2-way associative cache and the top memory block is the most recently
accessed memory block. In the example, the input probabilistic cache state con-
tains only one cache state and its corresponding probability is 1. Memory block
m5 can be reached via three paths. Thus, before m5 is accessed, the corre-
sponding probabilistic cache state contains 3 cache states and each of them is
associated with a probability (path probability). Given the probabilistic cache
state, the hit probability of m5 is the sum of probabilities where m5 can be
found which is just P3 in the example. After m5 is accessed, the probabilistic
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cache state is updated with m5 becoming the most recent accessed memory block
(top).

4.2 Static Program Analysis

Cache hierarchy is not modelled in [12,14]. In the following, we will extend it for
caches with multiple levels.

Separate Cache Analysis. For L1 cache, it services every memory reference
request. However, this is not true for L2 cache, because L2 cache is only accessed
when the memory reference incurs L1 cache misses. Given a memory reference
m and its hit rate on level L cache Hm[L](0 ≤ Hm[1] ≤ 1), we need to consider
two scenarios (access and not access) for level L + 1.

Let � be the cache state update operator defined in [12,14]. Given a proba-
bilistic cache state C (single level), C � m returns the probabilistic cache state
after accessing m5 (See Fig. 2, probabilistic cache state before m5 is updated
after the access to m5). We define

⊕
as a merge operator for two probabilistic

cache state.
⊕

(C1, C2, w) will return a new probabilistic cache state C which is
the union of all the cache states in C1 and C2. w is a weight function of C1 and
C2, where w(C1) + w(C2) = 1. As for the probability of each cache state after
merging, let P c

C denote the probability of cache state c in probabilistic cache
state C. After merging, P c

C = P c
C1

× w(C1) + P c
C2

× w(C2).
Now, let Cin

m and Cout
m be the L2 cache state before and after access to mem-

ory block m. In order to handle two-levels cache, we define a new probabilistic
cache state update operator �

Cout
m = Cin

m � m
=

⊕
(Cin

m , Cin
m � m,w)

where the weight function w is defined as w(Cin
m ) = Hm[1] and w(Cin

m � m) =
1 − Hm[1]. For the base case ( L1 cache), � = �.

Analysis of Cache Hierarchy. For a two-level caches, we need to do a top-
down cache hierarchy analysis as shown in Fig. 3. We start with L1 cache anal-
ysis. After L1 analysis, the probabilistic L1 cache state is available at every
point of program and the hit/miss probability of each memory access can be
computed. Then, we proceed to L2 cache analysis. For L2 analysis, the cache
state is updated based on the hit/miss probability of L1. After L2 analysis, the
probabilistic L2 cache state at every point of program and the corresponding
hit/miss probability of each memory access to L2 cache can be derived.

Cache Hits Computation. Let us use B to represent the set of the basic
blocks of the program and MB to represent the set of memory blocks of basic
block B. Let H[L] be the number of cache hits of level L for the entire program.
For basic block B, let us use NB to denote its execution count. According to the
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Fig. 3. Top-down cache hierarchy analysis

non-inclusive multiple level cache properties, L2 cache is accessed if and only if
it is a miss in level one cache. Thus, we have:

H[1] =
∑

B∈B

∑

m∈MB

NB × Hm[1]

H[2] =
∑

B∈B

∑

m∈MB

NB × (1 − Hm[1]) × Hm[2] (1)

where Hm[L] is the cache hit rate of memory block m in cache level L. Hm[L]
is available after the above separate cache analysis and NB can be obtained
through profiling. In addition, the number of accesses to memory (L2 misses) is
just I − H[1] − H[2], where I is the number of dynamic executed instructions.

Optimizations. We observe that, in a probabilistic cache state, some of the
cache states have very low probabilities. That is, these cache states correspond
to rare program paths. Based on this observation, we prune some of the cache
states for space and time efficiency. We define the metric dist for pruning. Given
two cache states c1, c2 at the same level, we define d(c1, c2) as the measure of
the distance between them. It is defined as a function of the number of different
memory blocks between them. But higher priority is given to the more recently
used memory blocks as shown in Eq. 2.

dist(c1, c2) =
∑

∀i

{
A − i + 1, if c1[i] �= c2[i]
0 otherwise

(2)

We apply two merging strategies for each level of cache. First, if the proba-
bility of a cache state c is too small (< Te), then it is pruned. But its probability
is added to the closest cache state to c (the closest is defined by the dist met-
ric) in the probabilistic cache state. Second, if the number of cache states in a
probabilistic cache state exceeds a pre-defined limit Z, then Z cache states with
highest probability are kept and the others are pruned. As before, the proba-
bility of each pruned cache state is added to its closest surviving cache state in
the probabilistic cache state defined by the dist metric. In practice, we set Te to
10−6 and Z to 4.

5 Experimental Evaluation

5.1 Experiments Setup

We evaluate the accuracy and efficiency of our analytical modeling using Imp-
Bench suite [16] which is designed especially for biomedical applications. Imp-
Bench contains benchmarks from four categories: lossless data compression,
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symmetric-key encryption, data-integrity and real applications. The benchmarks
are described in Table 1.

Traditionally, cache design space is explored via trace driven cache simula-
tion. In this paper, we compare with one of widely used trace-driven cache sim-
ulation tools Dinero IV [6]. Dinero IV supports both single level and multiple
level cache simulation. Given the cache design parameters of two level caches,
Dinero IV returns the cache performance number (hits/misses) for each level
respectively. The input trace size for each benchmark is shown in Table 1.

We use SimpleScalar toolsets [1] for experiments. We instrument its func-
tional simulator to collect the execution count of basic blocks and control flow
edges. Our estimation first disassembles the executable and construct CFG, and
then proceeds with the analytical cache analysis and cache hit/miss estimation.
We perform all experiments on a 3 GHZ Pentium 4 CPU with 2 GB memory.

Table 1. Benchmark characteristics and exploration time comparison. Exploration
time via simulation is shown in column Dinero; our analytical analysis time is shown
in column Analysis.

Benchmarks Description Trace (MB) Time (sec)

Dinero Analysis

Minilzo Compression 948 8921 23.07

Finish Compression 1600 14938 45.49

Misty1 Encryption 1300 13788 23.25

RC6 Encryption 643 6223 52.53

Checksum Data-integrity 359 3316 19.87

Crc32 Data-integrity 2100 19943 17.51

Motion Real-application 529 4986 24.03

Dmu Real-application 2200 21440 254.57

5.2 Performance and Energy Model

We assume processor, standard cache and near threshold cache all work at lower
frequency mode (10 Mhz) to achieve energy saving. For near threshold cache, its
access latency should be slightly slower than standard cache due to the increased
cell size, but body-biasing techniques can be used to regain the speed at the
cost of additional energy consumption [5]. As for the cache access latency, we
assume 1 cycle latency for L1 access and 4 cycles latency for L2 access. The
main memory access is considered to be pipelined. The first access to main
memory is 18 cycles, while the subsequent accesses take 2 cycles. For different
cache configurations, we model the energy consumption of the memory hierarchy
using the CACTI [21] model for 0.13µm technology. In this paper, our focus is
dynamic energy consumption.
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As has been mentioned earlier, given the same die size, the fabricated near
threshold cache size (capacity) is smaller than standard ones. On the other hand,
the consumed energy per access of near threshold cache is less than that of
standard cache due to its lower voltage. In this paper, the parameters of the near
threshold cache we consider is the same as the one used in [5]. Table 2 shows
various parameters for standard and near threshold cache used in this paper.
As shown, near threshold cache is with lower voltage but its size (capacity) is
only half of the standard cache with the same die area. More importantly, our
method is not restricted to these specific parameters and can be applied to other
near threshold designs as well.

Table 2. System parameters.

Voltage Size

Standard cache 800mV S

Near threshold cache 500mV 0.5 × S

Given a cache configuration C, its energy per access to standard cache is
defined as Es which is obtained from CACTI [21]. According to general energy
equation Es = C ×V 2 × f × t, when the supplied voltage is decreased to V ′, the
energy consumption per access is changed to Es × (V

′
V )2. Thus, for the same

cache configuration C, the energy consumption per access to near threshold cache
En = Es×( 500800 )2 using the parameters in Table 2. As for the energy consumption
for one access to memory, it is assumed to be 50 times of energy consumption
of one access to standard level two cache [24].

5.3 Experiment Results

As for the cache design parameters, we choose realistic parameters to reflect
the typical design of embedded systems. For L1 cache, we consider 1 KB and
2 KB cache sizes, 16 and 32 block (line) size and direct mapped, 2 and 4 way set
associativities. For L2 cache, we explore 1 K, 2 K, 4 K and 8 K cache sizes, 16 and
32 block size and direct mapped, 2, and 4 way set associativities. However, in
reality, the block size and cache size of L2 must be equal to or greater than that
of L1 cache, respectively. In addition, for near threshold cache design, its size is
a half of standard cache as shown Table 2. Thus, we need to explore 512B L1
cache as well (others have been covered). For L2 cache, we do not need to explore
512B cache size, because L2 size should be greater or equal to L1 size and we do
not have an architecture that both L1 and L2 are near threshold cache. Totally,
Dinero and our analytical analysis have to explore 297 cache configurations and
there are 540 design points (architecture type and cache parameters) in the
design space.
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Fig. 4. Performance-energy design space and pareto curves for both simulation and
estimation.

Design Space and Pareto Optimal Points. The entire design space regarding to
two-level cache design is explored via both simulation (Dinero) and our esti-
mation (analytical analysis). The simulation and estimation results are cache
performance numbers (hits/misses) for each cache level. Then, we compute the
performance and energy numbers for each cache configuration based on the per-
formance and energy model. The entire design space for both simulation and esti-
mation are shown in Fig. 4. Each point represents a cache configuration (archi-
tecture type, L1 and L2 parameters) and it is associated with corresponding
performance and energy consumption. The pareto points regarding to both sim-
ulation and estimation are highlighted too. Only 4 benchmarks (RC6, Misty1,
Minizlo, Dmu) are shown here due to space constraints.

For the entire search space, we are only interested in the pareto optimal
points and each pareto optimal point represents a cache configuration (architec-
ture type: baseline, architecture A and B, cache parameters: cache size, line size
and associativity). From Fig. 4, we observe that our estimation is close to simula-
tion for these pareto optimal points. We rely on the detailed simulation to eval-
uate accuracy of our estimation for these pareto optimal points. We use Wattch
energy/performance model to obtain the accurate performance and energy of the
cache configurations represented by pareto optimal points for both simulation
and estimation. Wattach is a micro-architecture level cycle energy/performance
simulator [2]. However, Wattch does not model the memory energy. We extend
Wattch to include the energy consumption of memory component and modify it
to use the parameters shown in Table 2. In this paper, we focus on the instruction
cache, so we disable the data cache component in the Wattch simulator.
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Now, we have two sets of pareto optimal points (simulation and estimation)
from Wattch. To compare them, we rely on the metric in [25]. Let X ′,X ′′ be
two sets of pareto optimal points,

C(X ′,X ′′) =
|{a′′ ∈ X ′′;∃a′ ∈ X ′ : a′ � a′′}|

|X ′′|
where a′ � a′′ means a′ covers (dominate or equal) a′′. C(X ′,X ′′) is in interval
[0, 1], where C(X ′,X ′′) = 1 means that all solutions in X ′′ are covered by solu-
tions in X ′; C(X ′,X ′′) = 0 means that none of the solutions in X ′′ are covered
by the set X ′. Let sim, est be the two sets of pareto optimal points for simulation
and estimation, respectively. Then, we are interested in C[est, sim]. For all the
8 benchmarks, C[est, sim] = 1. In other words, all the exact solutions (config-
urations from simulation) are covered by solutions (configurations) returned by
our analytical modeling.

80%
100%

Pareto points breakdown

0%
20%
40%
60%
80%

0%

B li A hi A A hi BBaseline Architecture A Architecture B

Fig. 5. Pareto points breakdown.

Architectures Comparison. For the set of pareto optimal points, they may be
different in terms of cache design parameters (cache size, line size and associativ-
ity). Moreover, they may be from different architectures (Baseline, Architecture
A and Architecture B). In Fig. 5, the breakdown of pareto optimal points in
terms of cache architectures for both simulation and estimation are shown. We
observe that for all the benchmarks, the composition of pareto optimal points
of estimation is very close to that of simulation.

For benchmarks such as crc32, checksum etc., their working set are quite
small. In other words, smaller cache can achieve the same performance as bigger
cache. Thus, for these applications, to fabricate the same area to smaller size
near threshold cache does not affect performance but reduce the energy con-
sumption. Therefore, the pareto optimal points consist only of near threshold
design (architecture A and architecture B), not baseline design. For benchmarks
such as misty1, dmu etc., their working set are not small, reduction in cache size
for near threshold cache may help reduce the energy but may lose the perfor-
mance on the other hand. Thus, both the baseline and architecture (A or B) for
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near threshold cache are found in the pareto optimal solutions. Normally, archi-
tecture A may bring down the energy significantly and meanwhile may degrade
the performance much; architecture B may reduce the energy slightly since there
are fewer access to L2 and meanwhile maintain the performance. These different
architectures reflect different design tradeoffs (performance vs energy design). To
thoroughly evaluate the design tradeoffs (performance vs energy), all the three
architectures need to be explored. More importantly, with the help of architec-
ture A and B, we may find some cache configurations that can meet the design
constraints for energy critical biomedical applications, while this may be infea-
sible only considering baseline architecture due to its large energy consumption.

Energy Reduction. For some biomedical applications, energy saving is more
important than performance lose. Here, we focus on the energy consumption
only. For baseline architecture, we select the configuration which results in the
minimal memory hierarchy energy in the design space. For near threshold archi-
tecture (both architecture A and B), we choose the configuration with the min-
imal energy too. Then, we compare these two minimal energy consumption
achieved from different architecture. The results is shown in Fig. 6. It can be
seen that energy consumption is reduced significantly by using near threshold
cache. On average, near threshold cache architecture shows an 59% reduction in
memory hierarchy energy over baseline without near threshold cache.

70%

Memory Hierarchy Energy Reduction

20%

30%

40%

50%

60%

20%

Fig. 6. Memory hierarchy energy reduction compared to baseline architecture without
near threshold cache.

Exploration Time. The total time for exploring the entire space using simulation
and estimation (our analytical analysis) is shown in Table 1 in column Time.
As shown, the exploration is reduced from hours (for simulation) to seconds.
Overall, our analysis is 84–1003 times faster compared to simulation. Gordon-
Ross et al. [8] showed that heuristics can be used to reduce the search space such
that only 7% of the space needs to be explored. However, the speedup (about
14 times faster) achieved by their heuristic is still much less than our analytical
analysis. More importantly, our analysis can be enhanced with their technique
to further improve the efficiency.
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6 Conclusion

In this paper, we present an analytical approach for exploring two-level near
threshold cache for low power biomedical applications. We first propose three
different architectures for performance and energy purposes. Then, we describe
an efficient analytical approach to explore multiple levels cache configurations.
The experiments results indicate that our analytical analysis cover all the opti-
mal points obtained by simulation. Furthermore, using near threshold cache
architectures, we show on average a 59% reduction in energy.
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Abstract. Due to leakage current, DRAM devices need periodic refresh
operations to maintain the validity of data in each DRAM cell. The
shorter refresh period is, the more refresh overhead DRAM devices have
to amortize. Since the retention time of DRAM cells are different because
of process variation, DRAM providers usually set default refresh period
as the retention time of those weakest cells that account for less than
0.1% of total capacity.

In this paper, we propose DearDRAM (Discard weak rows DRAM), an
efficient refresh approach that is able to substantially reduce refresh over-
head using two mechanisms: selectively disabling weak rows and remap-
ping their physical addresses to a reserved region. DearDRAM allows
DRAM devices to perform refresh operations with a much longer period
(increasing from 64ms to 256 ms), which reduces energy consumption.
It is worth noting that compared to previous schemes, DearDRAM is
easy to be implemented, does not modify DRAM chip and only intro-
duces slight modifications to memory controller. Experimental results
show that DearDRAM can save refresh energy an average of 76.12%,
save total energy about 12.51% and improve IPC an average of 4.56% in
normal temperature mode.

Keywords: DRAM · Memory controller · Refresh · Weak cell

1 Introduction

Dynamic Random Access Memory (DRAM) takes nearly 11.7% of peak power
usage of hardware systems [1], but a quite fraction of energy is used against
leakage current rather than normal accesses to DRAM devices. Basically, DRAM
consists of vast charge storage cells that are basic units to control and store each
bit of data [2]. Each cell contains a capacitive structure that stores the electrical
charge to present each bit of data. Because charge leakage, which is an inherent
phenomenon and shortage of the capacitor, will change the stored data over time,
a refresh operation is needed to maintain data integrity or data correctness.

The maximum time that a DRAM cell maintains data correctness without
taking any refresh operations is referred to as retention time, also called the
c© Springer Nature Singapore Pte Ltd. 2018
C. Li and J. Wu (Eds.): ACA 2018, CCIS 908, pp. 109–124, 2018.
https://doi.org/10.1007/978-981-13-2423-9_9
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refresh window, tREFW . The retention time of each DRAM cell is not the same
due to process variation and operation temperature. For instance, process vari-
ation will lead to a small fraction of weak DRAM cells that have weaker ability
to keep data integrity than normal cells [3–5]. The retention time of weak cells
might be 64 ms while that of normal cells could be 256 ms. In order to keep data
correctness in all cells, DRAM providers usually adopt a conservative yet simple
approach, i.e., configuring all cells with a uniform retention time that depends on
weak cells. However, it is unnecessary to refresh the vast majority of normal cells
in such high frequency, which results in a nearly 20% of extra power consumption
[5,6]. Moreover, intensive refresh operations significantly reduce performance of
DRAM devices [7], because DRAM ranks under refreshing can not execute any
read or write operations.

To reduce large amount of unnecessary refresh operations, several differenti-
ated refresh strategies are adopted to refresh weak cells and normal cells with
different frequencies, i.e. adding extra refresh operations for weak cells [5,6,8].

It is clear that above approaches are efficient to reduce refresh overhead,
but they have two shortages. On one hand, previous approaches need to modify
JEDEC1 standards to add extra refresh operations. Although it is technically
reasonable to modify commands and state diagrams of DRAM devices defined
in JEDEC standards, a lot of row activation commands for refreshing rows will
take up much command bus bandwidth and lead to bus congestion. On the
other hand, current approaches require relatively complicated design to leverage
differentiated retention time. For example, usually the distribution of retention
time of weak cells as well as normal cells needs to be persevered.

In this paper, we propose a low-overhead refresh approach, DearDRAM (Dis-
card weak rows DRAM). Instead of devising different refreshing policies accord-
ing to the distribution of retention time, DearDRAM directly discards (or dis-
ables) weak DRAM rows that contains weak cells. Such an extreme idea is based
on a key observation that weak cells actually account for even less than 0.1%
of total capacity of a DRAM chip [5]. For example, a 32GB DRAM chip has
fewer than 1000 cells whose retention time is less than 256ms, and only about
30 cells whose retention time is between 64 ms and 128 ms. So it is acceptable to
disable those weak cells. By doing so, memory controllers will not send requests
to these weak rows. Meanwhile, DRAM devices can perform refresh operations
with a much longer period based on the retention time of normal cells, thereby
significantly reduce refresh overhead. Moreover, DearDRAM does not require
modifications to JEDEC’s DDRx specification.

However, directly disabling weak rows leaves holes in physical address space,
which raises challenges on OS memory management. To deal with this issue,
DearDRAM adopts an address remapping mechanism that maps the addresses
of weak rows to a reserved region so that holes of physical address space are
filled and OS can still obtain a continuous physical address space.

We implement DearDRAM on DRAMSim2 simulator that is integrated into
gem5 [10] and choose 7 memory-intensive workloads from benchmark suites

1 Joint Electron Devices Engineering Council (JEDEC) [9].
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SPECCPU2006 [11] for evaluation. Experimental results show that for a 16GB
DRAM system, DearDRAM can improve performance by 4.56% (up to 10.57%
in high temperature) and save energy consumption by 12.51% (up to 28.84% in
high temperature) on average over baseline mode.

In summary, this paper makes the following contributions:

– We propose a low-overhead DRAM refresh scheme DearDRAM that adopts an
extreme yet effective idea of disabling weak rows for reducing refresh overhead.
The idea is based on a key observation that weak cells account for even less
than 0.1% of total capacity of a DRAM chip.

– We design an address remapping mechanism to resolve the address space hole
issue so that OS can still obtain a continuous physical address space. The
overhead of the remapping mechanism is negligible, requiring only a storage
of 8.87 KB extra space in memory controller.

– Our experimental results show that DearDRAM outperforms state-of-the-art
approaches. Moreover, it is independent of any refresh modes and is non-
intrusive to industry standards. Thus, DearDRAM can be easily and directly
integrated into current DRAM systems.

2 Background
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Fig. 1. Basic organization of memory controller.

2.1 Memory Controller

In modern memory systems, a memory controller is the key component that
processes data streams into or out of DRAM devices that connect with the
controller [2]. As shown in Fig. 1, an abstract architecture of memory controller
consists of various components. From CPU to DRAM chips, DRAM requests are
processed through the following five stages:
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1. Transaction scheduling. Processor cores send read and write requests
to Input Queue of memory controller via Request Input Interface [14].

2. Address translation. Operations are mapped to corresponding memory
addresses and converted into a series of DRAM commands.

3. Command scheduling. A pool of queues are used to store commands,
and each queue can be assigned to one bank or rank. Memory controller also
generates refresh operations and stores them in Refresh Queue. Then memory
controller uses a pre-defined scheduling policy to select operations among the
pool of queues and the refresh queue.

4. Electrical signalling. With the signalling interface, the chosen com-
mands are issued to target DRAM devices.

5. DRAM access. DRAM devices finish the requested operations in this
stage.

2.2 DRAM Refresh Modes

Current DRAM devices support two typical refresh modes: auto-refresh (AR)
and self-refresh (SR). AR is used to maintain the DRAM working on normal
state, while the target of SR is to reduce background energy when DRAM devices
stay at idle periods without any operations.

Auto-Refresh Mode. In general, refresh circuits consist of a refresh counter
and a timer, where the refresh counter is used to record the address of row that
will be refreshed, and the timer is used to increase the refresh counter to trace
the rows. Refresh circuits can stay in a memory controller [14] or can be a part
of DRAM devices [8]. Memory controller issues refresh operations interleaved
with normal memory accesses at regular intervals.

DRAM devices have the ability to flexibly control the refresh operations by
themselves, thereby simplifying the structure of memory controller [8]. A typical
refresh mode called all-bank refresh has been adopted in commercial DRAM
chips. It works as follows: First, the memory controller issues AR commands at
a fixed refresh interval (tREFI) to all banks in a rank. Second, during the refresh
completion interval (tRFC), DRAM device decides the rows to refresh by its
internal refresh logic. Due to limited current, banks are refreshed in a pipelined
way [2,7] instead of refreshing all banks simultaneously. However, the rank will
not receive any memory requests from memory controller during the period of
all-bank refresh.

For DDRx devices, tREFI is variable due to operation temperature, while
tRFC escalates rapidly with the increasing of device density [5]. DDR4 imple-
ments a fine granularity refresh mode to slow down the growth rate of tRFC [9].
In the fine granularity mode, users can use a mode register set (MRS) command
to program the tREFI and tRFC in 1x, 2x or 4x mode. Table 1 shows the detailed
timing values of tREFI and tRFC for two DRAM generations in different device
sizes and operation temperatures.
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Table 1. The values of refresh timing parameters for various DDRx devices in different
modes and temperatures.

Device (mode) tREFI(μs) tRFC(ηs)

0 ∼ 85 ◦C 85 ∼ 95 ◦C 4 Gb 8Gb 16 Gb 32 Gb

DDR3 7.8 3.9 300 350 - -

DDR4(1x) 7.8 3.9 260 350 480 640

DDR4(2x) 3.9 1.95 160 260 350 480

DDR4(4x) 1.95 0.975 110 160 260 350

Self-Refresh Mode. In AR mode, all clock circuits of DRAM devices stay
in active state during the whole refresh procedure. In the refresh procedure,
the delay locked loop and peripheral logic cost much of background power. In
fact, DRAM device will not receive any read/write commands from memory
controller, so the energy consumption of background power can be reduced by
closing external I/O circuitries, i.e. SR mode. In order to maintain data integrity,
each DRAM device has a build-in timer to trace and generate refresh operations.
When a DRAM device switches to SR mode, it will disable all related peripheral
logic circuitries and delay locked loop.

2.3 DRAM Rows Retention Time

Due to the electric charge leakage phenomenon of DRAM cells, it is needed to
charge each cell over time to maintain data integrity. Retention time indicates the
maximal time that a row can keep data validation without any charge operations.
There are two factors influencing row retention time. First, process variations
will lead to different retention time of cells, which are usually divided into weak
cells and normal cells. In this work, we use similar timing values to divide cells
as prior works [5,6,8]. Specifically, the retention times of normal cells is not less
than 256 ms, while the remainder cells are weak cells. The rows containing weak
cells are weak rows and others are normal rows.

Second, high operation temperatures speed up the cell leakage. DRAM com-
mercial operating temperatures defined by JEDEC standards are between 0 ◦C
and 95 ◦C, where the normal temperature mode is between 0 ◦C and 85 ◦C and
the high temperature mode is between 85 ◦C and 95 ◦C. The retention time is
64 ms in normal mode, and 32 ms in high temperature mode.

3 Discard Weak Rows DRAM

We propose a low overhead refresh approach, DearDRAM (Discard weak rows
DRAM) which directly discards (or disables) weak DRAM rows. In this section,
we will present detailed design of DearDRAM.
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Fig. 2. The architecture of DearDRAM.

3.1 Overview of DearDRAM

DearDRAM disables weak rows by redesigning the address translation stage
(as described in Sect. 2.1) of memory controller. The physical address space is
divided into two continuous regions, i.e., normal address region and reserved
address region, where only the normal address region is visible to OS. Each
region consists of a number of continuous DRAM rows. Basically, the normal
address region is far larger than the reserved address region and contains a large
scale of continuous DRAM rows including weak rows. Thus, memory controller
is responsible for mapping the addresses of weak rows into the reserved address
region. In particular, if a request accesses the address of a weak row, memory
controller will forward it to a normal row in the reserved address region. By
contrast, when a request accesses the address of a normal row, it will be processed
in traditional way.

To minimize the overhead of address remapping, we pick several successive
rows to form a reserved address region, and use the mode of “Base address +
Offset” to simplify the complexity of DearDRAM’s address remapping design.
The detailed architecture of DearDRAM is shown in Fig. 2. Three components,
Weak Rows Bin, Offset Table and Base Address Register, are added to memory
controller. More information is described as follows:

Weak Rows Bin. This structure is used to store the information of weak rows.
It may be the simplest way to store weak row information by associating each
row of DRAM with a 1 bit wide status counter in memory controller. However,
it will result in excessive storage overhead. To reduce storage cost, we adopts
same measures as RAIDR [5]that uses bloom filter, an efficient data structure,
to store the information of weak rows with low hardware overhead.

Offset Table. To track the address remapping information for weak rows, we
use an offset table to record the indices of weak row and the offset of new mapped
normal rows from the start address of the reserved address region. The offset
ranges from 0 to Numweak − 1, where Numweak is the number of weak rows.
The total items of the offset table are not less than the number of weak rows.
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Base Address Register. We use a base address register to record the boundary
between normal address region and reserved address region, i.e. the start address
of reversed address region.

In next subsections, we will elaborate DearDRAM’s design.

3.2 Weak Row Address Mapping

In general, it is easier for OS to manage a continuous physical address space
than an address space with holes. Unfortunately, DearDRAM disabling weak
rows leaves holes in the normal address region, which raises complexity of OS
memory management. Thus, to resolve this issue, DearDRAM adopts a weak row
address remapping mechanism. Specifically, when a DRAM operation accesses a
normal row, its address remains unchanged and is not affected by DearDRAM.
Next we will mainly focus on how the requests to weak rows are remapped in
the following parts.

In DearDRAM, when a weak row is accessed, it will be redirected to a row
in the reserved address region. In order to simplify the mapping between weak
rows and the reserved address region, we locate the reserved address region in
the end of whole DRAM address space. We use Eqs. (1) and (2) to calculate
the size and the start address of reserved address region respectively. The target
address of each weak row are computed by Eq. (3).

Sizereserved = Sizerow × Numweak (1)
Baseaddr = Maxaddr − Numweak (2)
Destiaddr = Baseaddr + Offseti (3)

where Sizereserved is the size of reserved address region. Sizerow is the size of a
single row. Maxaddr denotes the maximum physical address of current DRAM
configuration. Baseaddr represents the initial address of the reserved address
region. Destiaddr indicates the mapping address in the reserved address region
of i − th weak row.

3.3 Address Translation

In the address translation phase, memory controller will distinguish the desti-
nation address of each request received from processors or DMA engines, and
process them with different operations. DearDRAM disassembles this phase into
following two steps:

The first step is identifying the type of destination address. When mem-
ory controller is translating the address of a request, it lookups the destination
address in the weak rows bin. If such an address is not found, the target row
is a normal row in the normal address region. If the target address is in the
weak rows bin, then the target row is a weak row and will be remapped into the
reserved address region.

The second step is processing requests. The normal requests will be imme-
diately sent to queue pool as a normal operation. For a request to a weak row,
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memory controller will use its destination address to get the offset by querying
the offset table, then compute the mapping address by Eq. (3) and send it to
queue pool.

3.4 Return Transactions

For return transactions, we also need to take differentiated actions to process
them. Likewise, memory controller processes all return transactions from DRAM
with the following two phases:

The first phase is recognizing the region of each return transaction. Memory
controller exploits the return address to minus the value of base address register,
then checks the result. For addresses in the normal address region, the differences
are larger than ‘0’. Other results are considered to be from reserved address
region.

The second phase is processing return transactions. The return transactions
of normal rows are appended to the return transaction queue directly. For other
transactions, memory controller uses the result of phase 1 to query the offset
table, then recovers the original addresses of return transaction and inserts them
into return transaction queue.

3.5 Weak Rows Profiling

In order to identify weak rows from a whole DRAM system, we have to detect
each DRAM cell in every row. We adopt a common method which has been used
in several previous studies to inspect the row retention time [5,15]. This method
disables the refresh operations, then writes a series of data in “all 1s” or “all 0s”
pattern, and verifies the intactness of these data in a specified time period.

In DearDRAM mechanism, the memory controller uses default refresh mode
to maintain the data correctness before filling the weak rows bin, offset table and
base address register. With the above method, OS can examine the retention time
of each row and record these information in a file. Then, OS calculates the initial
address of reserved address region, generates the offset of each weak row, and
saves these results into another file. During the next OS’ boot-up, these files are
loaded into the memory controller to fill the three key components. Meanwhile,
OS will adjust the size of accessible DRAM address space to the size of normal
address region.

Variable retention time (VRT) reflects a new phenomenon that several
DRAM cells will transform between weak and normal cells [16] Luckily, a recent
research [17] discovers that combining profiling techniques with SECDEC-ECC
and guardbandings can be an efficient way to avoid VRT-related faults. Our
study runs with these profiling techniques on this issue.

3.6 Hardware Overhead Exploration

In our evaluation, we add three components in the memory controller, where the
hardware overhead mainly from the weak rows bin and offset table. First, we
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exploit an efficient technique, bloom filter, as RAIDR [5] to reduce the cost of
storing weak row in memory controller. For RAIDR, its cost is mainly affected
by the number of bins associated with the DRAM refresh interval. The default
RAIDR configuration uses a 256B bin to store the rows that retention time
between 64 ms and 128 ms, and uses another 1 KB bin to save the rows that
retention time between 128 ms and 256 ms. Unlike RAIDR, DearDRAM only
requires one bin to record the information of which are weak cells, so we use a
1 KB as default weak row bin size. Second, we conservatively set 1.5 K items for
the offset table to indicate the mapping between weak rows and normal rows in
the reserved region, based on the analysis of previous studies [3–5]. For 32-bit
address space, each item consumes 43 bits, the whole table takes up 7.87 KB,
where 32 bits denote row address and 11 bits present offset. Third, the overhead
of base address register and the power overhead of the additional components is
negligible compared to the entire DRAM chip. In above analysis, the total extra
overhead of DearDRAM is 8.87 KB.

4 Implementation

As introduced in Sect. 2.2, the memory controller has to send more than tREFW

tREFI

refresh commands within a tREFW , otherwise DRAM cells will fail to hold data
due to the deadline of retention time. For the original all-bank refresh mecha-
nism, it requires at least 64ms

7.8µs ≈ 8192 refresh commands during each retention
time. In DearDRAM design, we enlarge the original value of tREFW (64ms) of
DDR3 and DDR4 devices to 256 ms. DearDRAM provides two implementation
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Time
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Fig. 3. Different refresh modes.
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mechanisms, extending and shortening, to balance the tradeoff between energy
consumption and access latency in different aspects. In this section, we show
how they are implemented in all-bank refresh mode. Figure 3 shows the refresh
operations of all-bank refresh mode and DearDRAM, where Fig. 3(a) shows the
issue pattern of the original refresh operations in all-bank refresh mode.

Extending. The extending method does not change the number of rows being
refreshed by each command, but enlarge the value of tREFI , i.e. send less refresh
operations within tREFW . For an 8Gb x8 DRAM device in all-bank refresh
mode, each bank has 65536 rows, and hence each all-bank refresh command
has to refresh 8 rows in each bank. With the extending method, each refresh
operation still refreshes 8 rows, but tREFI increases from 7.8 µs to 256 ms ÷
64 ms × 7.8 µs = 31.2 µs. Figure 3(b) shows the issue pattern of the refresh
operations using extending method.

Shortening. The shortening scheme holds the number of refresh commands
being issued within tREFW . Instead, less rows will be refreshed by a refresh
command to ensure the correctness of all DRAM cells during each retention
time. For the DRAM device mentioned above, shortening scheme will issue 8192
refresh commands within tREFW , and each command only refreshes 2 rows.
Figure 3(c) illustrates the issue pattern of the refresh operations using shortening
method.

5 Methodology

5.1 Experimental Setup

To evaluate the effectiveness of DearDRAM, we use an open-source cycle-
accurate simulator, gem5 [10], to simulate a X86 multi-core platform and inte-
grate another open-source memory system simulator DRAMsim2 [18] into gem5
to simulate the DRAM system. We improve DRAMSim2 to conform the JEDEC
DDR4 specification, including several timing parameters and different refresh
modes. For all refresh related DRAM timing and current parameters, we use the
values similar to [7,8], as listed in Table 2. Where IDD5B is 47 for REFLEX and
DearDRAM1, and is 102 for others.

Table 2. The timing and current parameters configuration of DDR4 16 Gb (x16)
DRAM device, where the unit of timing values is 1.25ηs, except for tCK.

Timing Value Current Value (mA) Timing Value Current Value (mA)

tCK 1.25 IDD0 24 tRCD 10 IDD1 32

tRAS 28 IDD2P 6.4 tRC 40 IDD2N 10.1

tRP 12 IDD3N 16.6 tRRD 4 IDD4w 58

tWR 15 IDD4R 60 tFAW 20 IDD5B 47/102

tRFC 384 IDD6 6.7 tRFC 4x 208 IDD7 107
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Table 3. Configuration of the evaluated system.

Processor 4 OoO cores, 10 MSHRs per core, 3.2 GHz clock frequency

L1 Cache Private, 4-way associativity, 32 KB, 64 B block size

L2 Cache Shared, 64 B block size, 4MB, 16-way associativity

Memory Close page, line-interleaved address mapping,

Controller 64-entry read/write queue, FR-FCFS scheduling [?]

DRAM 800 MHz Bus frequency, Devices density 16Gb, 1 channel, 2 rank
per channel, 8 banks per rank, 16 subarrays per bank

Table 4. Retention time distribution of the evaluated system.

Retention time range Number of rows

64ms–128 ms 28

128ms–256 ms 978

more than 256 ms 523282

As adopted in former memory studies [20,21], we complete the cache warm-
up via skipping the the initial stages with running 5 billion instruction in fast-
forward mode. In addition, we only ensure the fastest core can reach to 100
million instructions. The detailed system configuration is shown in Table 3. To
evaluate the performance of multi-core systems, we use Weighted Speedup (WS)
[13] as the performance metric.

5.2 Workloads

We select 7 workloads from a single-thread benchmark suite, SPEC2006 [11](lbm,
libquantum, mcf, milc, soplex, astar, gobmk), to evaluate our schemes and several
related mechanisms with reference input set. These workloads are memory inten-
sive applications and have high last-level cache (LLC) misses per kilo instructions
(MPKI). To implement multi-core simulation environment, we replicate and mix
these workloads via running a copy or process of an application on each core.
We use the following short names to denote all workload combinations: 4 ×
lbm (M1), 4 × milc (M2), 3 × milclibquantum (M3), 3 × libquantum-mcf (M4),
3 × milc-lbm (M5), 3 × mcf-libquantum (M6), 2 × mcf-libquantum-lbm (M7), 2
× milc-mcf-lbm (M8), lbm-libquantum-mcf-milc(M9), 2 × libquantum-mcf-milc
(M10), lbm-libquantum-soplex-astar (M11) and libquantum-milc-gobmk-soplex
(M12).
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6 Evaluation Results
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Fig. 4. Normalized refresh energy
comparison among All-bank Refresh,
REFLEX, RAIDR, DearDRAM1 and
DearDRAM2 for a 16 GB DRAM
system in normal temperature mode
(lower is better).
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ison among All-bank Refresh, REFLEX,
RAIDR, DearDRAM1 and DearDRAM2
for a 16 GB DRAM system in normal tem-
perature mode (lower is better).
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parison among all schemes in high tem-
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Fig. 7. Normalized total energy compar-
ison among different mechanisms in high
temperature mode (lower is better).

6.1 Compared Mechanisms

In this section, we evaluate the energy and performance of each refresh policy
in both normal and high temperature modes. We compare the performance of
DearDRAM with the following mechanisms:

– All-bank refresh. As introduced in Sect. 2.2.1, all-bank refresh is the base-
line of our experiments.

– RAIDR. The Retention-Aware Intelligent DRAM Refresh mechanism groups
DRAM rows into different bins according to different DRAM cell retention
times, then refreshes rows in different bins with different rates. We quote
the DRAM rows distribution from the original literature [5] and list them
in Table 4. The original RAIDR is incompatible with all-bank refresh, and
it refreshes DRAM with a row-granularity refresh scheme that has not yet
been used in modern DRAM. Therefore, we modify it to support the all-bank
mode as [6].
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– REFLEX. The Flexible Auto-Refresh scheme [8] modifies the internal refresh
counter of DRAM and add a new command “dummy-refresh” to skip unnec-
essary refreshes. We focus on REFLEX-4x techniques with all bank refresh.

6.2 Energy Saving

We use DearDRAM1 to denote the shortening and DearDRAM2 to present the
extending (the following figures adopt the same terms). We set the all-bank
refresh policy as the baseline and normalize the result of all other mechanisms.
In all figures, ‘Avg.’ is the average of all workloads combinations.
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Figure 4 compares the DRAM refresh energy consumption of each refresh
scheme by running different combinations. Compared to the baseline, all mech-
anisms can eliminate redundancy refresh operations. For most workloads, the
refresh energy consumption of different schemes follows an order (from more
to less): baseline, REFLEX, RAIDR, DearDRAM2 and DearDRAM1. REFLEX
will decrease about 46.74% extra refresh energy on average, because this policy
can reduce the number of row refreshed by each refresh operation, and requires
the less current. The modified RAIDR can save 22.69% refresh energy on aver-
age (up to 71.12%). However, for those extreme memory-intensive combinations
such as M1, RAIDR is better than DearDRAM1 primarily because the higher
MPKI a workload exhibits, the more bus bandwidth it needed. Thus, when the
MPKI reaches a threshold, it occupies much bandwidth and increases latency.
On average, DearDRAM1 and DearDRAM2 save refresh energy by 84.39% and
76.12%, respectively. DearDRAM1 save the most refresh energy in all schemes.

Figure 5 shows the total energy consumption on four-core multiprogrammed
workloads. The total power consumption of each combination has similar distri-
bution as the refresh power consumption in Fig. 6. DearDRAM1 consumes less
total energy than RAIDR for all combinations, due to DearDRAM1 consumes
less background energy and easier to enter SR mode when the accesses in a
low frequency. DearDRAM1 can achieve up to 14.61% (an average of 13.21%)
energy saving. Meanwhile, DearDRAM2 can reach to 14.02% (an average of
12.51%) energy saving.
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Figures 6 and 7 show the refresh and total power of different mechanisms,
respectively. When the DRAM is operated in high temperature, refresh oper-
ations are more frequent and will be doubled. On average, DearDRAM1 and
DearDRAM2 save refresh energy by 84.92% and 77.4%, respectively. Despite
the percentage of refresh power reduction is not changed much for DearDRAM1
and DearDRAM2 in different temperature mode, they total energy are reduced
about 23.86% and 23.15% respectively, due to refresh energy is increased in the
proportion of total energy.

No matter in normal temperature mode or high temperature mode,
DearDRAM1 and DearDRAM2 can save more energy than other schemes, espe-
cially the mechanism DearDRAM1.

6.3 Performance Improvement

As mentioned before, eliminating refresh operations improves effective serving
time of DRAM chips, thereby reducing memory access latency. Figure 8 shows
the normalized DRAM weighted speedup of each workload with different refresh
policies in normal temperature mode. Comparing Fig. 5 and 87, we can find
that the weighted IPC of different mechanisms follow the similar pattern as
energy saving in general. For most workloads combinations, REFLEX performs
worse than baseline, and reduces performance by 3.81% on average. DearDRAM1
improves performance by 3.06% on average while RAIDR achieves an average of
1.3%.

In high temperature mode as shown in Fig. 9, REFLEX performs even worse
than the baseline because too many refresh commands are issued so as to occupy
the command bus for a long time and delay normal read/write operations.
REFLEX and DearDRAM1 are not suitable for memory-intensive application
combinations, and are more suitable for evenly distributed memory requests.
In high-temperature environment, the refresh operations will increase and the
advantages of DearDRAM1 and DearDRAM2 are even more obvious. Overall,
DearDRAM2 always performs the most among all schemes, slightly improves
the performance of 4.56% on average (up to 5.1%) in normal temperature mode
and an average of 10.57% (up to 14.04%) in high temperature mode.

7 Related Work

Liu et al. [5] propose RAIDR, as described in Sect. 6.1. RAIDR reduces unnec-
essary refresh operations by the fact that different DRAM cells have different
retention time. RAIDR refreshes DRAM rows with different refresh rates for dif-
ferent retention times. Cui et al. [22] propose DTail, a refresh reduction scheme
that stores the retention time information within the DRAM itself to reduce
storage cost. They revise the DDRx protocol and add a new command silent
refresh that only increases the value of row address counter, instead of executing
refresh operation. Wang et al. [6] propose ProactiveDRAM, a new DRAM reten-
tion time management that stores weak rows information in the DRAM like [22]
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and allow the DRAM itself to issue extra refresh to weak rows when necessary.
Bhati et al. [8] propose Flexible Auto-Refresh (REFLEX) techniques to reduce
unnecessary refresh operations. They also propose dummy refresh, a command is
similar to silent refresh to increase the refresh counter in the DRAM device while
skipping refresh operations. Almost all these studies are motivated by leveraging
the RAS-only refresh (ROR) which is disused in the current DRAM device for
its poor scalability and compatibility. Furthermore, it is not a good tradeoff to
take too much cost to maintain the correction of a small number of weak rows.

8 Conclusion

In this work, we present DearDRAM, a novel DRAM system scheme for reducing
unnecessary refresh operations and improving the access efficiency with low-
overhead modification on the memory controller. DearDRAM is motivated by
the observation that the vast majority of DRAM rows have longer retention
time than the value offered by JEDEC. DearDRAM no longer maintains the
correctness of weak rows and remaps the weak rows addresses to a reserved region
to keep the address space contiguous. Our experiments showed that, DearDRAM
is a low-cost and efficient scheme to save refresh power consumption and reduce
DRAM latency within the whole DRAM system.
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Abstract. Despite the Deep Neural Network (DNN) has achieved a great
success in image recognition, the resource needed by DNN applications is still
too much in terms of both memory usage and computing time, which makes it
barely possible to deploy a whole DNN system on resource-limited devices such
as smartphones and small embedded systems. In this paper, we present a DNN
model named EffectFace designed for higher storage and computation efficiency
without compromising the accuracy.
EffectFace includes two sub-modules, EffectDet for face detection and

EffectApp for face recognition. In EffectDet we use sparse and small-scale
convolution cores (filters) to reduce the number of weights for less memory
usage. In EffectApp, we use pruning and weights-sharing technology to further
reduce weights. At the output stage of the network, we use a new loss function
rather than the traditional Softmax function to acquire feature vectors of the
input face images, which reduces the dimension of the output of the network
from n to fixed 128 where n equals to the number of categories to classify.
Experiments show that, compared with previous models, the amounts of weights
of our EffectFace is dramatically decreased (less than 10% of previous models)
without losing the accuracy of recognition.
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1 Introduction

Going with the progress of computing technology, the machine learning technology,
especially the deep neural network (DNN) technology, is experiencing a breakthrough
in recent years. As the levels of the neural networks going deeper, their express ability
is going to an unprecedented area, which made DNNs the best choice in an increasing
club of applications. As for face recognition, some state-of-art DNN models for image
recognition have achieved great success such as the VGGFace [4] which achieves
99.47% of accuracy on LFW.

However, as the cons, DNN models have a very large quantity of weights. As for
VGGFace, the size of its weights is up to 520 Mbytes. A large number of parameters
require extremely high computing power and high energy cost. As for the resource-
limited platforms such as smartphones, it is not easy to share the great success of DNN.
Another issue for those models is that all of them use a classifier such as Softmax at the
end of the network [5–9], to classify the image and find out which category the object
in the image belongs. The downsides of this approach are its indirectness and its
inefficiency. The dimension of the output equals to the number of the categories to
classify [10–12], which could be very large.

To improve the efficiency of the model, we analyzed many previous models for
face recognition such as Cascade CNN [1] and DDFD [2]. We learned that these DNN
models all simply pile more convolution layers on the network to achieve the goal see
Fig. 1. That makes this method not be able to scale to various devices in terms of
computing and storage capability.

Face recognition requires two procedures, face detection (finding out where the face
is in a specific image) and face recognition (analyzing the identity of the face).

In this paper, we propose EffectFace, a new DNN model for face recognition
designed with speed and efficiency in consideration. Our model is designed for both

Fig. 1. Previous DNN architecture
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training as well as inference and consuming much fewer resources of both computation
and storage makes it suitable to be deployed on a wide range of resource-limited
devices.

In our EffectFace model, we introduce two efficient sub-modules respectively for
these two procedures and both are DNN models.

The model we use for face detection is called EffectDet. we use sparse and small-
scale filters inspired by NiN [14] (Network-in-Network) for our EffectDet model for
face detection, which both theoretically and experimentally proved to reduce the
number of weights and size of the feature map of each layer significantly.

Our model for face recognition, named EffectApp, is also designed with speed and
efficiency in mind. Based on VGG16, we first use the pruning and weights-sharing
technology on the neural networks model to reduce the size of weights for each
convolution and fully-connected layer. Then, at the end of the net, we use TripletLoss
[13] as loss function rather than traditional Softmax classifier to acquire the feature
vector of the aimed face image. At last, with feature vectors of the face images,
recognition becomes a simple k-NN classification problem. Through this approach, the
output of the EffectApp network is a fixed 128-bit feature vector of the face image and
the number of weights is reduced, which is far more efficient than the previous VGG
model.

The rest of this paper is organized as follows: Sect. 2 gives brief analysis on related
work, Sect. 3 talks about the details of the approach to implement our model and
Sect. 4 shows the evaluation data of the model via experiments

2 Related Work

Convolutional Network is the most prevalent Neural Network at present. It has
achieved great success in Computer Vision. For instance, LeNet [20] is a typical small
Convolutional Network with two Conv layers, two pooling layers and two FC layers
which has a good performance on some small-scale datasets such as MNIST and
CIFAR. To deal with other large-scale datasets such as ImageNet, a direct way is to add
more layers to acquire enough feature such as VGGNet [4]. The disadvantage of this
method is obvious. Simply piling layers would make the number of weights increase
intensively resulting in numerous usage of the resource of memory and computation.

Architecture like NiN [14] (Network in Network) and Inception [3] are designed to
solve the above issue. Both use sparse filters to replace the dense connections of
complicated networks and increase the depth of the network with multiple “micro-
cores” like 1 � 1 conv filters.

To further reduce the number of weights, some DNN Compression technologies are
used such as pruning and weights-sharing. Early works like [21, 22] prune networks
based on Hessian loss function while recent work like [23] successfully prunes some
large-scale networks without accuracy penalty. Works like [24–26] use Hash function
to group the weights into some Hash bucket and weights in the same bucket share a
single value. [27] implements this method on several different datasets keeping the
generalization of the model without increasing storage overhead. The Back-
Propagation algorithm can naturally be applied to the parameter training of the Hash
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bucket and the weights-sharing tech can be integrated into other generalized DNN
models.

3 Fast and Efficient Face Detection and Recognition

3.1 EffectDet

In our EffectDet model for face detection, we use a network-in-network paradigm
introduced by [3] to optimize the network structure, including several relatively small
convolution kernels (filters) of different size. The design of the Inception [3] archi-
tecture is inspired by the research of the visual neural model of animals’ brain in
biology. An image usually has a high correlation in some specific part areas. Therefore,
in our EffectDet model, we use three different filters with the size of 1 � 1, 3 � 3 and
5 � 5 simultaneously, as shown in Fig. 2, to acquire the feature of different part areas
rather than using a single filter with a larger size in the previous approach to improving
efficiency. We also add 1 � 1 filters before the 3 � 3 and 5 � 5 filters, which can
significantly reduce the number of weights inspired by NiN [14] architecture.

Based on the Inception architecture, we build our EffectDet model, as shown in
Fig. 3. We use three Inception to acquire the feature with a Max Pooling layer added to
the end of the second one to share weights and reduce the number of them.

3.2 EffectApp

As for our face recognition model, EffectApp, we realize that VGGFace uses relatively
larger convolution kernels connected densely leading to waste on the resource of both
computation and storage. Therefore, in the premise of ensuring accuracy rate of the
model, we compress it properly.

We use pruning technology on EffectFace. First, we train the model in the tradi-
tional way and then prune the weights less than a fixed threshold value. Next, weights
of the pruned model can be represented by sparse matrixes which can use CSR or CSC

Fig. 2. Inception architecture

130 W. Li et al.



www.manaraa.com

to store. These sparse matrixes need 2a + n+1 storage units where a represents the
number of non-zero value in the matrixes and n represents the number of columns or
rows. Finally, we re-train the pruned model, which is sparsely connected.

To further reduce the number of weights of the model, we also use weights-sharing
technology. All weights are clustered and weights in the same cluster use one shared
value in codebook via an index matrix. In this way, the number of values of the weights
to store is reduced. In addition, the gradients of weights are also clustered and shared in
the same way while updating the weights see Fig. 4.

During this clustering and sharing process, we use K-means for clustering at the
beginning. We cluster n weights W ¼ w1;f w2; . . .;wng into K categories C ¼
c1;f c2; . . .; ckg; n � k, with the goal of minimizing the class mean square see Eq. 1.

Then we initialize the codebook to figure out the value that weights in the same cluster
should share. There are three different initialization method [15] Forgy (random),
Density-based and Linear. In DNN, weights of large value are more important [16],
while the random approach ignores this. So we choose linear initialization for our
EffectApp model to improve the accuracy.

argmin
c

Xk

i¼0

X
w2ci w� cijj 2 ð1Þ

The compression rate of our approach shown as Eq. 2. We assume a network layer
contains n weights and each weight is in size of b-bit. Through our approach, these n
weights clustered into k categories sharing k values. The size of each codebook index is

Fig. 3. EffectDet model.
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log2k-bit. The things we need to store are codebook of shared values k*b and the
codebook index matrixes n � log2k

CompressionRate ¼ kbþ nlog2k
nb

ð2Þ

Besides the compression technology, we also change the loss function of the
previous VGGFace for our EffectApp model for face recognition. Since Softmax
classifier is indirect and not efficient, we use TripletLoss [13] as the loss function of our
model. Instead of classifying the image at the end of the neural network, our model just
acquires the feature vector of the image as the output of the net. In other words, our
network model just aims to acquire the feature vector of the input face image and with
these feature vectors we can make our application such as face recognition separately
through a simple way and does not depend on the neural network. Therefore, the
overhead of the DNN is reduced and the model is more efficient.

The main idea of the TripletLoss aim function is to ensure that the feature vector of
a face image xai is far closer to the ones of its positive samples xpi than the ones of its
negative xni samples see Fig. 5 and Eq. 3 where a is a margin that is enforced between
positive and negative pairs and T is the set of all possible triplets in the training set and

Fig. 4. clustering and sharing weights as well as gradients

Fig. 5. Training based on TipletLoss
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has cardinality N. The equation of the TripletLoss function see Eq. 4 where f xð Þ 2 R
d

embed an image � into a d-dimensional Euclidean space, here d = 128.

xai � xpi
�� ��2

2 þ a\ xai � xni
�� ��2

2; 8 xai ; x
p
i ; x

n
i

� � 2 T ð3Þ
XN

i
f xai
� �� f xpið Þ�� ��2� f xai

� �� f xni
� ��� ��2 þ a

h i
þ

ð4Þ

Triplets selection is the key for training the network with TripletLoss function.
Generating all possible triplets would result in many triplets that are easily satisfied (i.e.
fulfill the constrains Eq. 3). These triplets would not contribute to the training and
result in slower convergence, as they would still be passed through the network. To
accelerate the convergence, we use the online triplets selection [13]. We choose the
farthest positive exemplar and closest negative exemplars satisfying Eq. 5 from each
mini-batch used for SGD.

f xai
� �� f xpið Þ�� ��2\ f xai

� �� f xni
� ��� ��2 ð5Þ

Through TripletLoss, each output of the EffectApp is a fixed 128-bit feature vector
of the input face image rather than an n-dimension vector where n equals to the number
of categories classified which could be very large by using Softmax. By reducing the
dimension of the output, the efficiency of our model is also improved.

Finally based on VGG16 with weights compression and TripletLoss, our EffectApp
model is built as Fig. 6.

4 Evaluation

Our hardware experiment platform consists of a 6-core Intel(R) Xeon(R) E5-2620v3,
2.40 GHz CPU and an Nvidia(R) Geforce(R) GTX970 GPU with CUDA. And we use
Caffe as our deep learning framework.

Fig. 6. EffectApp model
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We use QIM (Quantifying Hyperparameter Importance) to set the training hyper-
parameters based on Plackett-Burman (PB) Design [27] for our models. We find that
the importance of the base learning rate (base_lr) for both our EffectDet and EffectApp
models are 43% and 46% respectively which are higher than any other parameters.
Some of the hyperparameters are set as Table 1.

To deploy our models, we use python API to extend Layers in Caffe. Each layer
needs to implement 3 methods: setup() for initialization, forward() for forward prop-
agation and backward() for backward propagation and SGD. Specifically, we add three
layers for our EffectApp model: TripleData Layer for data input and online triplets
selection, TripleSelect Layer to add tags and TripleLoss Layer to implement the loss
function. In addition, after we acquire feature vectors, a k-NN algorithm with k = 10 is
used to classify the face image.

Our goal to design the EffectDet model is to maximize the efficiency and minimize
the number of weights. So we compare it with Alexnet to test whether we achieve our
goal. Out test is based on the ImageNet [17] dataset.

We first test the Top-1 accuracy of both models see Fig. 7. Then we measure the
size of both models’ weights, where Alexnet is about 230 MBytes while our EffectDet
is only 29 MBytes. We use the area of circles to represent the number of weights see
Fig. 8.We can see that the top-1 accuracy of our EffectDet model is 5% better than
Alexnet while the size of weights is approximately only a tenth of the latter, which
presents the high efficiency of our model.

Table 1. Settings of some hyperparameters

base_lr gamma step_size batch_size max_iter

EffectDet 0.0001 0.1 1,000 10 100000
EffectApp 0.05 0.1 2,000 12 400000
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Fig. 7. Top-1 accuracy of Alexnet and EffectDet
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We also compare our EffectDet with R-CNN [18] and CascadeCNN [19] and plot
PR diagram. Figure 9 shows that our EffectDet has similar performance with Cas-
cadeCNN while R-CNN is relatively inferior.

As for our face recognition model, EffectApp, we compare its efficiency and
accuracy with those of VGG16 since our model is based on it. Figure 10 shows the
compare of the number of weights of both models where EffectApp(p) represents the
pruned model and EffectApp(p + s) represents pruned model with weights-sharing
technology. We can see both pruning and weights-sharing technology can reduce the
number of weights dramatically (by more than 50% of each layer) especial in fully-
connected layers (by more than 95%). In general, the number of weights of EffectApp
(p) is 8% of that of VGG16 and EffectApp(p + s) is only 5% of it.

In the aspect of accuracy, we implement k-NN algorithm through the feature
vectors acquired by EffectApp. Figure 11 shows the compare of EffectApp, VGGFace

Fig. 8. Top-1 accuracy and weights size of Alexnet and EffectDet

Fig. 9. PR of EffectDet with R-CNN and CascadeCNN
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and DeepFace and Fig. 12 represents the ROC of the three models. All the three
models achieve more than 95% on top-1 accuracy and the ROC diagram presents that
the performance of our EffectApp model is better than VGGFace but slightly weaker
than DeepFace.
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Fig. 11. Accuracy of VGGFace, DeepFace and EffectApp
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5 Summary

In this paper, we present a fast and efficient deep neural network model EffectFace for
face recognition based on the analysis of several previous models. It includes two sub-
modules which are EffectDet for face detection and EffectApp for face recognition. We
optimize the network architecture inspired by NiN for EffectDet to reduce the number
of weights. In EffectApp model, based on VGGFace, we first use pruning and weights-
sharing technology to reduce the number of weights. And then we change the tradi-
tional Softmax loss function to TripletLoss to acquire feature vectors of face images
rather than classify images within the DNN, which reduces the dimension of the output
of the network to fixed 128 dimensions. At last, with the feature vectors acquired, we
implement a simple k-NN algorithm to finish the classification. The experiments show
that without compromising the accuracy, our model significantly reduce the total
number of weights (in EffectDet, the number of weights is 1/8 of that in previous
model, and in EffectApp, it’s only 5% of the original VGGFace) and therefore, its
efficiency is improved.

Fig. 12. ROC of VGGFace, DeepFace and EffectApp
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Abstract. Because of the human brain’s parallel computing structure
and its characteristics of the localized storage, the human brain has great
superiority of high throughput and low power consumption. Based on
the bionics of the brain, many researchers try to imitate the behav-
ior of neurons with hardware platform so that we can obtain the same
or close computational acceleration performance like the brain. In this
paper, we proposed a hardware structure to implement single neuron
with Integration-and-Fire(IF) model on Virtex-7 XC7VX485T-ffg1157
FPGA. Through simulation and synthesis, we quantitatively analyzed
the device utilization and power consumption of our structure; mean-
while, the function of the proposed hardware implementation is verified
with the classic XOR benchmark with a 4-layer SNN and the scalability
of our hardware neuron is tested with a handwritten digits recognition
mission on MNIST database using a 6-layer SNN. Experimental results
show that the neuron hardware implementation proposed in this paper
can pass the XOR benchmark test and fulfill the need of handwritten
digits recognition mission. The total on-chip power of 4-layer SNN is
0.114 W , which is the lowest among the ANN and firing-rate based SNN
at the same scale.

Keywords: SNN · FPGA · Hardware neuron

1 Introduction

With the development of machine learning, especially the increasing rigid
demand for computing speeds of the deep learning, people are increasingly
expecting to improve the computational performance of computer systems. How-
ever, due to the well-known storage limits and power constrains, the computer
system of the classic Von Neumann structure is often subject to bandwidth con-
straints and can not provide sufficient data for computational components. In
fact, as early as 2004, some important manufacturers have turned their attention
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to improving performance through multi-core architecture. Unlike computers of
Von Neumann structure, biological brain is highly parallel. Neurons store data in
local units and have a low power consumption when they are in a inactive period.
In order to obtain the same or close computational acceleration performance like
the brain, many researchers have turned to the study of the brain [1,2,7,17,19].
However, the structure of the brain has its biological characteristics and it can
not be simply reused in the area of hardware SNN implementation.

First, there is a contradiction between biological plausibility and scalability.
If we adopt a very complex mathematical neuron model, the hardware resource
cost of hardware neuron will be unacceptable and the scalability of the single
hardware neuron will be very poor. On the contrary, if we use a very simple
mathematical model, the biological behavior reproduction ability of the hard-
ware neuron will be poor and it will have a little biological plausibility. So we
should make a choice to balance the biological plausibility and scalability. More-
over, there is a contradiction between the calculation accuracy and limited stor-
age space. For local storage strategy, the hardware neuron needs to store the
parameters in local storage unit. In practical applications, the performance of
neurons are influenced by the accuracy of the parameters involved in the cal-
culation process. It means a great storage resource consumption when we store
the parameters locally. However, the resource of storage is limited. The third
problem is a contradiction between functional flexibility and power consump-
tion. If most of the parameters are fixed in the hardware neuron, the design
flexibility and adaptability of the hardware neuron will be very poor. However,
if little parameters are fixed, it will significantly increase the hardware cost and
additional power consumption of the hardware neuron.

Concerning these, Schrauwen et al. [2] proposed an FPGA hardware imple-
mentation scheme which is based on the LIF model and using a tree-like synapse
structure to improve the operation speed of neurons. Moreno et al. [3] proposed
a POE chip solution scheme and it can adapt itself to different problems just like
the biological organisms. Hampton et al. [4] proposed a new developmental model
structure in order to obtain the evolution of robust neural networks. Floreano
et al. [5] used an evolutionary pulsed RNN scheme to obtain real-time machine
control performance. However, few of them concern the factors of hardware con-
sumption and scalability and these factors are very important concerning the
large number of hardware neurons in SNN.

To make a balance between power consumption and function flexibility, we
propose a hardware structure based on FPGA and it has more biological plau-
sibility, scalability and better computing performance. The main contributions
are as follows: 1. Various of neuron modes are compared and analyzed for the
concerning of power reduction and functional flexibility. 2. A hardware neuron
of IF model structure is implemented, which has a potential on the functional
flexibility and network scalability. 3. The strategy of synaptic multiplexing and
a trick of using addition instead of multiplication are adopted, which reduce the
hardware device overhead and decrease the complexity of single neuron. Exper-
imental results show the hardware neuron we proposed can satisfy the need of
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solving XOR problem and accomplish the mission of handwritten digits recog-
nition on MNIST. It also has a good performance on power reduction and the
total on-chip power of 4-layer SNN is 0.114 W .

2 Background

2.1 Biological Neuron

There are three components of single biological brain neuron: dendrites, soma,
and axon (see Fig. 1). Dendrites receive action membrane potential from other
connected neurons through synapses, and pass it to the soma later. The soma
produces a corresponding membrane potential change based on the spikes it
receives, which can essentially be analogous to a weighting process. When the
membrane potential exceeds a threshold, the neuron generates a new spike. The
transmission of this new spike mainly relies on axon. Notice that, when the
previous spike is triggered, the neuron is in the refractory period and the spikes
arriving in this period will have little influence.

Fig. 1. The components of single biological brain neuron [6].

2.2 Mathematical Models

The mathematical models of neurons have been proposed and divided into
five categories: Biological-Plausibility, Biological-Heuristics, Integration-and-
Fire, McCulloch-Pitts, and other neuronal categories [7]. There are four typical
models we care more: Hodgkin-Huxley model [8], Izhikevich model [9], Integrate-
and-Fire model [10], and McCulloch-Pitts model [11]. Hodgkin-Huxley model can
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describe the biological neuron working process through four differential equations
and it has a good biological plausibility. Izhikevich model is a simplification of
Hodgkin-Huxley model. It can reproduce biological behaviors simply and accu-
rately. McCulloch-Pitts model is an abstraction of neuronal behaviors and it
transforms the spiking behavior into a mathematical procedure. Integrate-and-
Fire model is characterized by implementation convenience and functional flex-
ibility. With the basic IF model, we can add a leakage mechanism, introduce
a nonlinear process, or add adaptive parameters to form a series of variants.
We can imitate the behavior of biological neurons using different variants with
different complexity.

3 Related Work

So far, most works are focusing on two directions: ASIC-based implementation
and FPGA-based implementation. For the ASIC-based works, most of them
are proposed to satisfy the desire of large-scale neural network developing. For
FPGA-based works, they are mainly focusing on the functional verification pro-
cedure and the exploration of SNN practical application.

There are four famous ASIC based neuromorphic chips: TrueNorth [1], Neu-
rogrid [12], BrainScaleS [10], and SpiNNaker [13]. IBM’s TrueNorth [1] takes
full account of the need to reduce power consumption, adopts digital circuits,
with asynchronous event-driven simulation approach. It uses leaky-IF model
and achieves interconnection of neuron core with 256 ∗ 256 cross arrays. The
Neurogrid system [12] from Stanford focuses on the real-time performance of
large-scale SNNs. The system uses digital-analog hybrid circuit, synaptic mul-
tiplexing mode, and integrates hardware and software system. Its parent node
constitutes a network through routing, and can realize real-time processing of
neural information, which makes it the best choice in the field of robotic control.
The BrainScaleS system [10] from the University of Heidelberg aims at ultra-
real-time performance. The system uses a digital-analog hybrid circuit to control
the operating speed of the system. It can achieve up to 1,000 times the actual
speed of neurons and is widely used in large-scale parameter space exploration
due to its excellent computational speed. The SpiNNaker [13] of the University
of Manchester focuses on the adaptability of the hardware implementation plat-
form to different neuron models. The system uses a digital circuit to form the
entire network through 500,000 simplified processing cores. The nodes communi-
cate with each other through data packets. Its unique programmable module can
support multiple neuron models, synapse models, and learning algorithms and
it provides a excellent scalable and flexible hardware platform for researchers
through the Internet.

For FPGA-based works, most of them focus on the exploration of design-
ing space and performance gaining with different neuron models. Shayani et al.
[14] proposed a spike neural network scheme using PLAQIF (Piecewise Linear
Approximation of Quadratic Curve) integration and fire model. Maguire et al.
[15] mainly reviewed the implementation details of an FPGA-based SNN network
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and proposed an IF model-based design using an event-driven approach and a
time-multiplexing method. Coding the signal with the fire frequency method,
the FPGA implementation of the SNN was finally performed and Optimized.
Morgan et al. [16] proposed a reconfigurable and scalable network-on-chip solu-
tion based on the mixed-signal architecture (EMBRACE) FPGA scheme, using
the SNN architecture to build a 2-layer network, effectively solving the XOR
problem. Wang et al. [17] proposed a neural network architecture (NEF) for
real-time pattern recognition SNN networks. They use an online pseudo-inverse
update method (OPIUM) to update weights and simulates 64 neurons with a
hardware neuron in a time multiplexing way.

4 Preliminary Idea

4.1 Coding Scheme Selection

Most of works use the information of spiking time with the firing rate scheme
and spiking train method is less considered [9,17]. In addition, with the limi-
tation of on-chip memory storage resources, many works use the 16-bit coding
scheme to represent the membrane potential or membrane current without con-
cerning longer bits scheme [14]. However, it is the spiking train based coding
method which uses the information of spiking time more and the 16-bit coding
scheme often leads to a accuracy distortion for the limited bits. What’s more,
since the spiking train scheme only cares one bit in every time period, we can
significant reducing the power consumption with the trick of realizing multiplier
with multiple selections and adders. Therefore, concerning the power consump-
tion reduction and accuracy, we adopt a 32-bit spiking train based scheme as
our coding scheme.

4.2 Neuron Model Selection

As we know, Hodgkin-Huxley model is relatively complex in terms of hard-
ware implementation and it is not scalable in the realization of large-scale SNN.
Though McCulloch-Pitts model is simple enough, it is not the best optimal con-
cerning the biological plausibility. Izhikevich model is simple and it can accu-
rately replicate the behavior of biological neurons. However, its model is fixed
and it is not flexible enough to satisfy the need of different applications. Rel-
atively speaking, Integration-and-Fire model is flexible and adaptable. We can
conveniently increase or decrease the complexity with tricks to satisfy the needs
of practical applications. The highest hardware complexity of the IF module
variants is just comparable to Izhikevich model. The ability of biological neuron
behavior reproduction is also in a reasonable range. Therefore, considering the
complexity and the scalability of single hardware neuron, we choose to use the
IF model structure as the base model of our hardware neuron.
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4.3 Mathematical Method

As it showed, the IF model can be abstracted to a special circuit (see Fig. 2).

Fig. 2. The abstract circuit of IF model, where R is the biological neuron equivalent
resistance, C is the biological neuron equivalent capacitance, υ is the current neuron
firing threshold, α and δ are input and output spike function regarding to time, tf is
the firing time [18].

With mathematical expression, the model follows (1), where τm is the time
constant, its value is τm = RC. V is the current membrane potential, Ie is the
current action current, and EL is the initial membrane potential. Then with
integration method, Eq. (1) can be transformed to (2).

τm
dV

dt
= EL − V + RIe (1)

V (t) = EL + RIe + (V (t0) − EL + RIe) exp
−(t−t0)

τm (2)

Concerning dt = 1 ms, with the Euler integration method, Eq. (2) can be trans-
formed to (3), where V(t + dt) is the membrane potential at the next moment,
and V(t) is the current membrane potential. Concerning the accuracy of final
realization, the equation we adopt in the hardware neuron is Eq. (3).

V (t + dt) = EL + RIe + (V (t) − EL + RIe) exp
−(t−t0)

τm (3)

5 Hardware Neuron

5.1 Architecture

A single hardware neuron mainly includes three parts: weight summation mod-
ule, integration and fire module, and new signal generation module. These mod-
ules are respectively corresponding to dendrites, soma, and axon of biological
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Fig. 3. The corresponding part of the biological neuron of each hardware implementa-
tion modules. Both the input and the output are encoded with spiking train method.

neurons (see Fig. 3). The weight summation module mainly weights the input
signals from different neurons and then sums them. The integration and fire
module is mainly responsible for converting the weighted sum from the weight
addition module into the internal membrane current. Then the current partici-
pates in the corresponding differential equation operation to determine whether
to fire or not, according to the situation of the accumulated membrane potential.
The new signal generation module mainly determines the type of signal based
on the incoming signal of the integrated and fire module.

5.2 Key Components

The weight summation module has 4 input signals corresponding to 4 synapses
of neurons. The input signals are multiplied with the corresponding weights and
added at the same time. During the actual training of the SNN network, the
weights may be manually set or randomly generated by adding a weight gen-
eration module externally, which is specifically designed according to the appli-
cation needs. Note that, since we use the spiking train based coding method,
the weighting process can be simplified. If the spiking occurs, the corresponding
weights are summed. If the spike does not occur, the corresponding weights are
not added. Therefore, no multiplier is required in the actual hardware imple-
mentation scheme.

The integration and fire module mainly saves the accumulated value of neural
membrane potential through an internal register. If the accumulated value of
neural membrane potential exceeds the threshold, a spike occurs which means
an excited behavior of biological neurons is reproduced. The module multiplies
the weighted sum signal by a preset reference current value to generate the
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current neural action membrane current. Then, the membrane current of this
neuron is introduced into Eq. 3 and the current membrane potential is calculated
based on the cumulative value of the neural membrane potential at the previous
moment. If the threshold is exceeded, an enable signal is passed to the new signal
generation module. If the threshold is not exceeded, the neural action membrane
current is cleared, and the next timing calculation is performed.

The new signal generation module determines the procedure of spike genera-
tion. In our scheme, the signal is encoded using the spiking train based method.
If the spike occurs in the unit of time δt, the signal shows “1”, and if the spike
doesn’t occur, it shows “0”. Considering the error that the system hardware
device delays by td, the time step is set to less than δt. Through repeated mea-
surements, we take δt as 3 ms. With this spiking train method, we can not only
avoid the error of the firing rate, but also meet the requirements of different
application precisions by adjusting the coding mode of the spiking train without
any changes on the actual hardware implementation.

5.3 Implementation of SNN

The SNN for solving XOR problem has four layers and the architecture is showed
(see Fig. 4). It has one input layer, one output layer and two hidden layer. And
the number of neurons is 9. Each of the node symbolizes a hardware neuron,
which we proposed. And the weight of each neuron comes from the software
SNN which has the same topology of this hardware SNN.

Fig. 4. Architecture of 4-layer SNN.

The SNN for handwritten digits recognition on MNIST database has 6 layers
and it has 1594 neurons. The details is showed (see Fig. 5). The first layer is
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a input layer and it has 784 neurons. The second layer and the fourth layer
are convolutional layers. Each has 144 and 16 neurons. The third and the fifth
layer are max-pooling layers. The sixth layer is a full connection layer for final
classification.

Fig. 5. Architecture of 6-layer SNN.

6 Experiment and Evaluation

6.1 Experiment Setup

The experimental platform is showed (see Fig. 6). It has five modules: SNN
network module, SNN simulator, weight transform module, encoding module,
decoding module, and correct rate statistics module. Note, the SNN network
module can be replaced for the need of applications. The SNN simulator is a
software SNN, which is implemented on the framework of Caffe, and it has a
same topology like the SNN on FPGA. The weight transform module receives
weights from SNN simulator and transforms them into the proper form to satisfy
the need of SNN network module. The spiking train encoder module and decoder
module are mainly responsible for spiking train encoding and decoding process.
The correct rate statistics module, mainly in the stage of SNN network testing,
performs quantitative statistics on the correct rate of the SNN network based
on the input and output.
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The experimental platform is based on the VC709 evaluation board of the
Virtex-7 XC7VX485T-ffg1157 FPGA. The memory bandwidth of this board
can easily reach 40 Gb/s, and it can develop connectivity functions and common
evaluation. It can quickly provide powerful support for high-performance and
high-bandwidth applications, hardware and software. Hardware designing and
synthesizing is using Vivado. It has many functions and we can estimate power
consumption, timing, and footprint for each stage of the design flow to achieve
pre-analysis and optimize integrated functions. ANN modeling is implemented
with MATLAB and SNN modeling is based on the Brian2 [20], which is a simula-
tor for spiking neural networks and it is convenience in neuron model modeling.

Fig. 6. Architecture of our experimental platform.

6.2 Benchmark

As we know, XOR benchmark is a basic benchmark for the neural network and
it can verify the function of SNN on the area of data classification [21]. So we use
XOR benchmark to verify the functionality of our scheme. Therefore, we imple-
mented a 4-layer SNN on the FPGA platform using the proposed neurons and
verified the XOR function and the corresponding relationship between number
of correct input and fitness score assignment value are showed in Table 1.

The MNIST database of handwritten digits is a subset of a larger set avail-
able from NIST. It has a training set of 60,000 examples, and a test set of 10,000
examples. The 60,000 pattern training set contained examples from approxi-
mately 250 writers and the sets of writers of the training set and test set were
disjoint. So we use this database to accomplish the mission of handwritten dig-
its recognition, which is complex enough for us to evaluate the scalability and
calculating performance of our hardware neuron.
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Table 1. Fitness score value

Number of correct input 0 1 2 3 4

Fitness score assignment value 0 1 4 9 16

6.3 Baseline

The baselines of our experiment for solving XOR problem are a ANN network
with the activation function of sigmoid and a firing-rate SNN network with
signals coding in a firing rate way. The firing-rate SNN is implemented with the
same hardware neuron as the spiking-train SNN. The weight updating strategy
of ANN is based on the classic BP algorithm and the firing-rate SNN is based on
the STDP. We implement them on the same FPGA board and use the same xor
benchmark. The topology of ANN network and the firing-rate SNN are as same
as the spiking-train SNN. For simplification, we implement a 4-layer network
and collect the data of total on-chip power and devices resource utilization. We
also implement a software ANN with MATLAB to verify the correctness of the
hardware SNN results.

The baselines of handwritten digits recognition experiment are a ANN net-
work and a SNN network with the same topology as the 6-layer SNN. They are
both implemented with MATLAB. The output of the 6-layer SNN is collected
and compared with the baselines.

6.4 Result and Discussion

The membrane potential of the hardware neuron is determined through a pro-
cedure of accumulation (see Fig. 7). Each of the spike represents 1 unit of mea-
surement and the correspond weight is 1. At the beginning, spikes arrive and the
accumulation membrane potential is lower than 5. When the total accumulation
membrane potential is higher than 5, the hardware neuron spikes. As it shows,
Our hardware neuron can perfectly reproduce the spiking behavior of biological
neuron.

To satisfy the requirement of XOR function, which means that if inputs are
all the same, the corresponding output is logical 1 and if inputs are not same, the
corresponding output is logical 0. We designed our spiking train coding scheme
as follows. At the input port, we use ‘0101’ to symbolize logical ‘1’ and ‘0001’ to
symbolize logical ‘0’. At the output port, we use ‘0100’ to symbolize logical ‘1’
and ‘0000’ to symbolize logical ‘0’. In a word, it is a result of xor processing on
every bits. The wave figure is watched on each cycle. Experimental results show
that the neuron hardware implementation proposed in this paper can satisfy the
requirement of XOR function and the wave figure shows that the 4-layer SNN
using our hardware neurons can satisfy all the four results of xor benchmark.
Thus, it can reach the fitness score assignment value of 16 (see Fig. 8).

The devices resource cost of each network with 4-layer structure is showed
(see Fig. 9). We can find that the spiking-train based SNN costs the least devices
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Fig. 7. The procedure of the hardware neuron spiking behavior. The threshold we set
is 5. And it proves the membrane potential is iteratively introduced into the procedure
of calculation.

Fig. 8. Functional verify for XOR benchmark with wave figure.

and the ANN costs the most. Since the spiking-train based SNN transforms data
in spiking train mode, it doesn’t need to use a wide bandwidth, while the firing-
rate based SNN needs.

Fig. 9. Device consumption.

With Table 2, We can also find that the hardware neuron we proposed is
simple and needs less devices resource compared with the ANN with the same
accuracy. And our scheme costs almost the same as firing rate based scheme
except the IO resource and DSP resource. The IO utilization of spiking train
based SNN is just 24% while firing rate based SNN is 64%. The DSP utilization



www.manaraa.com

152 S. Wang et al.

of firing rate based SNN is 1.88% while spiking train based SNN doesn’t need it.
Concerning the large number of neurons in SNN, it is very meaningful for power
reduction.

Fig. 10. Total on-chip power.

Table 2. The ratio of each device resource.

LUT FF DSP IO BUFG

ANN 0.45% 0.14% 1.88% 64.67% 3.13%

Firing-rate based SNN 0.42% 0.12% 1.88% 64% 3.13%

Spiking-train based SNN 0.39% 0.11% 0% 24% 3.13%

Since ANN hardware implementation scheme needs to realize a complex sig-
moid function, its power consumption is huge. At the same time, since the firing
rate based SNN scheme needs to realize a multi-bites Multiplier while the spik-
ing train based SNN needs only Multiple selectors and adders, the spiking train
based SNN gets a lower power consumption. The total power consumption of
the spiking rate based SNN is 0.114 W while ANN is 0.143 W and the firing
rate based SNN is 0.117 W (see Fig. 10). We also find that the dynamic power
consumption of the spiking train based SNN is 0.012 W while the ANN is 0.041
W and the firing rate based SNN is 0.014 W . That means comparing with the
baseline, our scheme has a good performance at the aspects of device utilization,
total on chip power consumption and dynamic power consumption.

We compared the output of 6-layer SNN with its baselines. The experimental
result shows, the output is as same as the SNN implemented with MATLAB.
Since the hardware implemented 6-layer SNN can process spikes in a parallel
mode and need little middle transformation process, its calculating time is much
shorter than the ANN. That means the hardware neuron we proposed can be
used to handle a much complex mission and it has a good performance on the
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aspects of scalability. We also compare it with [14] and our hardware neuron has
a simple soma unit, which means it needs less devices. What’s more, since our
scheme adopt a 32 bit spiking train scheme while [15] adopt a 18 bit spiking train
scheme, the accuracy of our hardware neuron is higher than [15]. In a word, the
function of our hardware neuron can satisfy the need of practical applications
with high precision, while the consumption of FPGA resource is very low.

7 Conclusion

In this paper, we propose a hardware neuron based on FPGA and use the spiking
train based coding method to encode the signal. The proposed IF model based
neuron can reduce the hardware implementation complexity while ensuring the
performance of computing, biological plausibility and scalability for the con-
struction of large-scale SNN. In terms of signal representation, the spiking train
coding method we have adopted can make better use of the information of spiking
time and reduce the devices resource cost in a significant way. Finally, we com-
pare the device utilization and power consumption of different schemes and the
power reducing advantage of our hardware neuron is verified with experiments.

Although we strive to ensure that the implementation of a single neuron
hardware consumes resources and enhances performance as much as possible,
the actual solution of the spiking train coding scheme is still very simple. In
the future, our work will focus on the supporting of more complex IF models,
the using of FPGA off-chip storage resources, the exploration of a wider time-
domain spiking train code design, the construction of a large-scale SNN hardware
implementation platform.
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Abstract. With the rapid accumulation of multi-dimensional disease
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1 Introduction

With the rapid development of high throughput biotechnology, the cost of acqui-
sition multi-omics data of a disease becomes lower. The related biology knowl-
edgebase and database is accumulating rapidly. For example, TCGA project [1]
generates multi-omics data of more than 11,000 tumor patients, and provides
rich data source for the integrated analysis of multi-omics data towards the
assisted diagnosis and treatment of serious diseases. Integrated analysis [2,3]
of multi-omics data can help us identify disease subtypes and provide individ-
ualized treatment. We can also explore the biological process of diseases by
comparing the features of omics data between different patient groups. Curtis
et al. [4] found new subtype of breast tumors by integrating the genomics data
and transcriptomic data.

Similarity network fusion is an important part of multi-omics data integrated
analysis strategy. Wang et al. proposed the SNF method [5] in Nature Methods,
which fused multiple similarity networks constructed by multi-omics data of
tumor patients to identify the subgroups of various tumors and to improve our
understanding of diseases. The complexity and accuracy of the SNF is superior
to other algorithms, such as iCluster [6] and PSDF [7]. Moreover, the online and
offline tools [8] of the SNF offers researchers more convenient ways to use the SNF
method to integrated analysis. However, the proposition of precision medicine
initiative and the lower cost of multi-omics data generation necessarily bring
the explosive growth in the multiple dimensional data of patients with various
diseases. The complexity of the SNF method is O(n3), where n is the number
of samples. The computation time will mushroom by the increase of samples.
Hundreds of patients’ similarity network fusion takes seconds in the case of
Wang’s research paper, but it will take hours or days to fuse when the number
of patients reaches ten thousands, limiting our capacity of rapidly identification
patient subtypes. Furthermore, the algorithm is thus so memory-intensive that
it is unable to process larger-scale datasets.

Due to advances in parallelism, multi-core CPU has become the standard
configuration of personal computer, work station and server. Although the multi-
core processor is gaining popularity, there is no report on advances about the
SNF algorithm based on multi-core processor to the best of our knowledge. How
to benefit the performance and efficiency of the SNF algorithm by exploiting the
advantages of the multi-core CPU is an issue that needs to be addressed. In this
context, a parallel SNF algorithm based on multi-core CPU, named paraSNF,
is proposed in this paper. The computing speed is much faster than the serial
SNF algorithm. Moreover, the computational overhead is considerably reduced
and the storage space is saved by making full use of the sparsity and symmetry
of matrices.

The speedup and scalability of the SNF are investigated for this paper and
the contributions are summarized as follows. (1) A parallel SNF algorithm named
paraSNF is proposed to improve the scalability and speedup of the serial SNF
algorithm. (2) The experimental result reveal that the paraSNF is 30x–100x
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faster than the serial SNF. (3) More than 60% memory space are saved using
paraSNF through compressed storage.

The rest of this paper is organized as follows. Section 2 describes the serial
SNF algorithm. Section 3 presents the paraSNF algorithm based on multi-core
CPU, and analyzes the space utilization and computing efficiency of the algo-
rithm. Section 4 provides the experimental results on real-word datasets, and
analyzes the proposed algorithm’s performance and accuracy. Section 5 concludes
the research and discusses the future work.

2 Background

2.1 SNF Method

Suppose we have n samples for m data types. The main steps of the SNF method
includes:

Step1: Compute the similarity networks.
Firstly, compute the distance matrices. m n × n distance matrices are com-

puted for each data type, denoted as D(v), where v = 1, 2, · · · ,m.
Secondly, compute the similarity matrices. m n × n similarity matrices are

computed for each data type, denoted as W (v), v = 1, 2, · · · ,m. W (v) is the
scaled exponential similarity kernel of the vth data type determined by the weight
matrices D(v).

Step2: Integrate the similarity networks. The m similarity networks are iter-
atively fused into a single similarity network.

Firstly, compute m normalized weight matrices P (v) as follows:

P (v)(i, j) =

{
W (v)(i,j)

2
∑

k �=i W
(v)(i,k)

, j �= i
1
2 , j = i

(1)

Secondly, compute m matrices measuring the local affinity as follows:

S(v)(i, j) =

{
W (v)(i,j)∑

k∈Ni
W (v)(i,k)

, j ∈ Ni

0, otherwise
(2)

where Ni represents a set of the ith sample’s neighbors in the corresponding
similarity network.

Thirdly, iterate as follows:

P
(v)
t = S(v) ×

∑
k �=v P

(k)
t−1

m − 1
× (S(v))T , v = 1, 2, ...,m, t = 1, 2, ..., T (3)

where T is the maximum iterations. After t steps, the fusion matrix is computed
as follows:

P∞ =
1
2

m∑
v=1

P
(v)
t (4)

Step3: Cluster the fused similarity network using spectral clustering method [9].
The complete SNF algorithm is shown in Algorithm 1.
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Algorithm 1. The serial SNF algorithm
Input:

n: the number of samples. m: the number of data types.
nf (v): features number of the vth data type, v = 1, 2, · · · ,m.
F (v): the feature matrices of samples in the vth data type, whose size is n*nf (v),
v = 1, 2, · · · ,m.

Ouput:
1) Initialize m features matrices F (v).
2) Compute similarity networks.

Compute D(v) and W (v), v=1,2,..., m.
3) Integrate the similarity networks.

Compute P
(v)
0 and S

(v)
0

for t =1:T
Compute P

(v)
t

end
4) Cluster the fused similarity network.

2.2 Time Distribution of the SNF Method

As illustrated in Algorithm 1, the SNF method consists of the following stages:
Initialization, calculation of the similarity networks, similarity network integra-
tion, and clustering. Considering the S2-COAD model in Table 2 which contains
9292 samples with 3 types of data, Table 1 shows the time consumption of each
step and its proportion to the total time.

Table 1. Time distribution of the serial SNF

Step Time (s) Percentage (%)

Initialization 184.39 4.2

Calculation of the similarity networks 126.08 2.9

Integration 4098.90 92.5

Clustering 20.93 0.5

Table 1 indicates that the time consumption of the SNF algorithm is concen-
trated in the integration the similarity networks. The time complexity of this
steps is O(n3), where n is the number of samples. The paraSNF method is pro-
posed in this paper to improve the computational and storage efficiency of the
serial SNF method. We focus on the first 3 steps since these steps account for
more than 99% of the total time.

3 Parallel SNF Algorithm (paraSNF)

3.1 Initialization

In the serial algorithm, the data is stored as the text file, and is read very
inefficiently. In order to improve the initialization performance, we propose to
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store the input data as the binary file. Experimental results indicate that in
addition to saving memory space, binary storage improves the initialization speed
more than 100x.

3.2 Parallel Optimization of Vector-Vector, Matrix-Vector
Matrix-Matrix and Operations

Analysis of the SNF algorithm shows that the algorithm entails many vector-
vector, matrix-vector and matrix-matrix operations, including the pair-wise dis-
tance matrices D(v), the similarity matrices W (v), and the key step of iteratively
updating P (v). Computing the products of very large matrices and vectors is very
common in the SNF algorithm. Computing the multiplication of matrix-vector
and matrix-matrix is a fundamental operation in linear algebra library and has
been applied to many scientific areas to improving the computing efficiency,
such as the popular DGEMM function in BLAS, MKL, OPENBLAS and so on.
But the functions of these libraries are very limited. Some simple functions can-
not be executed without calling several library functions. As we all know, Data
prefetching has been proposed as a technique for hiding the access latency of
data referencing patterns [10,11] Calling several library functions will greatly
increases the data prefetching times and increases the cache miss rate. To facil-
itate discussion, we take the exponential function c(i) = α ∗ exp(−(a(i)b(i) )

2
/u) as

an example, where a, b and c denote the n*1 vectors, α and μ is scalar, exp
denotes an exponential function. If the BLAS library is selected, the following
five operations need to be executed in sequence to compute c(i), as shown in
code1. If n is large, each operation will entails prefetching all of the correspond-
ing vectors into the cache. In code1, the vectors a and b need to be prefetching
to cache once, and the matrix c needs to be prefetching to cache 5 times. In
order to reduce the frequency of data prefetching, a segment-wise calculation
algorithm is proposed in this paper, as shown in code2. In code2, vectors a, b
and c are divided into n/N continuous sequences of size N.

As the simple exponential function is divided into n/N times, the vectors with
a size N will be loaded into the cache at each time. After the five operations
are executed sequentially, the pointer drifts so that the next vector of the size
N can be loaded into the cache. In this way, the task can be accomplished by
loading a, b and c only once, reducing the prefetching times and improving the
algorithm’s speed. Experimental results show that the performance is optimal
when the vector of length N is 25% of the L3 cache.

For matrix-matrix operations C = A ∗ B, we use the Block-Cyclic based
algorithm. Matrices are subdivided into sets of blocks as the Connon method [12–
16]. For the sake of simplicity, we assume that all the matrices are n ∗n squares,
and that both the number of the vertical blocks and the number of horizontal
blocks are equal to q (i.e. the size of all blocks is equal to k ∗ k, where k = n/q).
Figure 1 shows the data assignment and data flow direction for the Cyclic-Block
based algorithm, where n = 12, k = 4, q = 3. We define subtask S(i, j) compute
the blocks C(i, j), where C(i, j) is the ith row and jth column matrix block of
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Code1: Original algorithm without
segment

Code2: Segment-wise calculation
algorithm

vdDiv(n, a, b, c);
vdMul(n, c, c, c);
cblas dscal(n, -1.0/u, c, 1);
vdExp(n, c, c);
cblas dscal(n, alpha, c, 1);

for (int i = 0; i <n / N; i++){
vdDiv(N, a + i*N, b + i*N, c2 + i*N);
vdMul(N, c2 + i*N, c2 + i*N, c2 + i*N);
cblas dscal(N, -1.0 / u, c2 + i*N, 1);
vdExp(N, c2 + i*N, c2 + i*N);
cblas dscal(N, alpha, c2 + i*N, 1);

}

C, so the set of subtasks forms a square grid. In this case, the basic subtasks
are responsible for computing the separate blocks. It is also required that each
subtask hold only one block of the multiplied matrices at each iteration. In this
way, some simple functions can be executed sequentially which can reduce the
cache missing rate.

Fig. 1. Data assignment and data flow.

Experimental results indicate that the matrix-matrix operation can be com-
puted fastest when the space consumed by the correlation matrix in each subtask
approximates to L3 cache.

3.3 Matrix Sparsity

Symmetry. Let ρ(xi, xj) denote the Euclidean distance between patients xi
and xj. We have ρ(xi, xj) = ρ(xj , xi), and ρ(xi, xi) = 0, which means D(v) is
a symmetric matrix with diagonal elements of 0. In this way, only the upper
triangle of matrices D(v) need to be calculated and then the upper triangle is
copied to the lower triangle. Suppose we have n samples (e.g., patients) and
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m types of data (e.g., mRNA gene expression). Each sample has nf (v) dimen-
sions. Benefiting from the sparsity of the symmetric matrices, the computational
complexity of the distance matrix is more than halved from n ∗ n ∗ nf (v) ∗ m
multiplications and 2 ∗ n ∗ n ∗ nf (v) ∗ m additions to n ∗ (n − 1) ∗ nf (v) ∗ m/2
multiplications and n ∗ (n − 1) ∗ nf (v) ∗ m additions. Similarly, from analysis of
the SNF algorithm, it is learned that the similarity graphs and the fused matrix
are also symmetric. Matrix symmetry considerably alleviates the computational
load of the paraSNF and improves its speed.

Sparsity. While updating the similarity matrices P
(v)
t , the kernel matrix S(v)

only encodes the similarity of the K most similar neighbors for each sample,
which means only K elements are used in each rows and the rest are 0. As K
is usually between 10 and 30, the number of samples n is usually largely than
10,000. Therefore, the number of non-zero elements is less than 0.5% of the S(v),
and the S(v) is very sparse. What’s more, each row of S(v) has the same number
of non-zero elements, making it easy to store S(v) using the Compressed Sparse
Row (CSR) format. The key step of the SNF is to iteratively update similarity
matrix with Eq. 3. Given n = 10, 000 and K = 20, the computational complexity
and time complexity of the sparse matrix are reduced to less than 1% of the dense
matrix, thereby greatly enhancing the algorithm’s performance.

3.4 Storage Optimization

According to the analysis of the previous section, the matrices D(v), W (v),
P (v) and S(v) are all symmetric. By storing only the upper triangular half of
these matrices, more than 60% of the storage space can be saved. To reduce the
memory requirements of large sparse matrix S(v), the Compressed Sparse Row
format was used to considerably save the storage space most of S(v).

Nonetheless, when solving the large-scale SNF problems, the memory space
needed to store the matrices might be still excessive, even if sparse represen-
tations are employed for them. Further analysis of the algorithm reveals that
matrix F (v) is not needed anymore after computing the distance matrices. There-
fore, the paraSNF saves memory by making matrices F (v) and W (v) share the
same storage space with matrix W (v).

4 Experimental Result

4.1 Experimental Environment

The SNF and paraSNF experiments were performed on a server with dual
quad-core processor, 256 GB memory, 2 6-cores IntelR© XeonR© CPU E5-2640
v3 @2.60 GHz and Ubuntu 14.04 OS.



www.manaraa.com

162 X. Shen et al.

4.2 Simulation Datasets

To simulate similarity network fusion for large-scale samples, we constructed two
simulation datasets S1 and S2 (Table 2).

The dataset S1 is constructed by the following steps:
(i) Generate linearly separable samples which can be divided into three clus-

ters, and denote these samples as Virtual Data 1.
(ii) Add N(0, 1) noise into Virtual Data 1, and denote these samples as

Virtual Data 2.
(iii) Add noise into Virtual Data 1 according to the Gamma distribution, of

which shape is 1 and scale is 0.5. And denote these samples as Virtual Data 3.
Thus, dataset S1 is consisted of three views data including Virtual Data

1, Virtual Data 2, and Virtual Data 3 (Fig. 2). For compare the calculative
efficiency of the paraSNF, we set the scale of simulation dataset S1 as 9999,
19998, and 30000, denoted as S1-9999, S1-19998, and S1-30000 separately.

The dataset S2 is constructed by the following steps:
(i) Download five tumor datasets from the SNF paper [5,17], including colon

adenocarcinoma (COAD), breast invasive carcinoma (BIC), lung squamous cell
carcinoma (LSCC), kidney renal clear cell carcinoma (KRCCC) and glioblastoma
multiforme (GBM),

(ii) Add N(0, 1) noise into these datasets and generate other simulation sam-
ples. Thus, dataset S2 is consisted of original samples from the SNF paper and
generated samples, denoted as S2-COAD, S2-BIC, S2-LSCC, S2-KRCCC and
S2-GBM.

Table 2. Samples in each simulation datasets

S1-9999 S1-19998 S1-30000 S2-COAD S2 BIC S2-LSCC S2-KRCCC S2-GBM

n 9,999 19,998 30,000 9,292 10,605 10,706 12,322 21,715

nf (1) 2 2 2 23,088 23,094 23,074 24,960 12,042

nf (2) 2 2 2 17,814 17,814 12,042 17,899 1,305

nf (3) 2 2 2 312 354 352 329 534

4.3 Analysis of Parallel Fusion

We used the paraSNF method to fuse the similarity networks in the datasets S1
and S2, and evaluated the precision of fusion result from two aspects.

Firstly, assess the accordance between true labels and integrated clustering
labels by the paraSNF. Since that the samples in the dataset S1 is linearly
separable with true labels but those in the dataset S2 has no true labels, we
only uses the fusion result based on S1 to evaluate the precision in this paper.
Normalized mutual information (NMI ) is used to assess the accordance between
true labels and integrated clustering labels. It’s illustrated that NMI is always
over 0.95 regardless of the sample scales (Table 3).
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Fig. 2. Generate the simulation datasets S1.

Secondly, compare the fusion result using the SNF and the paraSNF method.
We applied these methods to datasets S1 and S2 and found that the difference
of fusion matrix is less than 10−13 and the cluster results are totally same.

Table 3. NMI between true labels and integrated clustering results

S1-9999 S1-19998 S1-30000

NMI 0.9666 0.9603 0.9598

4.4 Memory Consumption and Performance

In this paper, SNFmatlab2.1zip from Bo Wang is used as the baseline, and
its code is available at http://compbio.cs.toronto.edu/SNF/SNF/Software.html.
By setting the singlecompThread parameter of MATLAB, the single-core single-
thread performance and multi-core multi-thread performance of the SNF were
tested. The speedup ratio of the paraSNF with respect to the two performances
was compared.

Memory Consumption. As discussed in Sect. 3.4, the matrices are put into
compressed storage using the attributes of symmetric and sparse matrices. Stor-
age schemes of the paraSNF are optimized via space reused. Table 4 shows stor-
age space consumption of the algorithm on dataset S2.

http://compbio.cs.toronto.edu/SNF/SNF/Software.html
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Table 4. Demand of the SNF and the paraSNF for memory space on different datasets

SNF (GB) paraSNF (GB) Percentage (%)

S1-9999 1.676 0.652 38.9

S1-19998 6.704 2.608 38.9

S1-30000 15.088 5.869 38.9

S2-COAD 1.804 0.679 37.6

S2 BIC 2.293 0.827 36.1

S2-LSCC 2.275 0.781 34.3

S2-KRCCC 3.041 1.062 34.9

S2-GBM 8.186 3.075 37.6

As shown in Table 4, the first two columns present the demand of the SNF
and the paraSNF for memory space. The last column describes the memory
space ratio between the paraSNF and SNF. From the results in this table, it
can be seen that memory consumption of the paraSNF is less than 40% of that
of the SNF. Therefore, the storage strategy proposed in this paper considerably
reduces the algorithm’s demand for memory.

4.5 Speedup

Cache Access Optimization. For the sake of simplicity here, we only compare
the performance of code1 and code2 in Sect. 3.2. The L3 cache of CPU used in
the experiment is 20 MB (2,621,440 double). Figure 3 shows the influence of the
continuous sequences size on time spent for code1 and code2. From the results in
this figure, it can be seen that when the sequences size is 25% (N = 655,352) of
L3 cache, code2 use the least time. Therefore cache access optimization increases
the cache hit rate and improves the algorithm’s performance.

Speedup of the paraSNF. We define Speedup1 refers to how much the
paraSNF is faster than the SNF sequential algorithm (we called serial SNF),
Speedup2 refers to how much the paraSNF is faster than the SNF on multi-
cores and multi-threads (we called multiSNF). The definitions of Speedup1 and
Speedup2 are as follows:

Speedup1 = Execution time of the serial SNF
Execution time of the paraSNF (5)

Speedup2 = Execution time of the multiSNF
Execution time of the paraSNF (6)

Figure 4 compares the speedup ratio of the paraSNF and SNF. Figure 4a and
b shows Speedup1 and Speedup2 respectively on dataset S1 and S2.

It can be learned from Fig. 4a that by adopting the binary storage strategy,
the initialization speedup of the paraSNF is improved by two orders of mag-
nitude. The efficiency of the paraSNF in calculating the similarity network is
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4.5x–7.5x faster than the serial SNF while the speedup1 ratios are 40x–136x
when integrate the similarity networks. The line of total time shows that the
speedup1 in 8 different dataset are up to 30x–100x. As shown in Fig. 4b the
speepup2 are up to 9x–20x when integrate the similarity networks even though
the SNF running on multi-cores and multi-thread. It can also be learned that
the larger the number of samples n is, the higher the speedup of the paraSNF is.

As the above experiments shows, the paraSNF algorithm is an efficient SNF
algorithm. Firstly, the performance of paraSNF is improved through re-construct
the SNF algorithm with BLAS library. Secondly, the segment-wise calculation
algorithm improve the cache hit ratio, which made the performance of the
paraSNF is further improved. Thirdly, because of the sparsity and symmetry of
the matrices in the SNF algorithm, the Compressed Sparse Row and the mem-
ory reused strategy were used, which not only reduced the calculate amount but
also save the memory space and improved the scalability of the paraSNF. Above
all, the paraSNF algorithm achieved better performance compared with both
serialSNF and multiSNF.
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5 Conclusion

A parallel SNF algorithm based on multi-core CPU called paraSNF is proposed
in this paper. Computational complexity is reduced by exploiting symmetry
and sparsity of the correlation matrices in the SNF algorithm. Storage space
is saved through compressed storage. Cache is also optimized to make full use
of the potential of multi-core CPU. The speedups of the paraSNF to the serial
SNF are up to 30x–100x, the speedups to multi-cores and multi-thread SNF is
8x–15x. Since the parallel acquisition of multiple data types of diseases will be
lower-cost with the development of biotechnology, the data source will accumu-
late rapidly and massively. It needs more efficient algorithm to speed up the
integrated clustering of multi-dimensional data. For involving many matrix and
vector operations, the SNF method is very suitable for many-core GPU. How to
speedup the SNF method using GPU and the CPU/GPU heterogeneous system
is an issue that needs to be studied in the future.
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Abstract. Nowadays, as the tremendous requirements of computation-
efficient neural networks to deploy deep learning models on inexpen-
sive and broadly-used devices, many lightweight networks have been
presented, such as MobileNet series, ShuffleNet, etc. The computation-
efficient models are specifically designed for very limited computational
budget, e.g., 10–150 MFLOPs, and can run efficiently on ARM-based
devices. These models have smaller CMR than the large networks, such
as VGG, ResNet, Inception, etc.

However, it is quite efficient for inference on ARM, how about infer-
ence or training on GPU? Unfortunately, compact models usually cannot
make full utilization of GPU, though it is fast for its small size. In this
paper, we will present a series of extensive experiments on the training of
compact models, including training on single host, with GPU and CPU,
and distributed environment. Then we give some analysis and sugges-
tions on the training.

Keywords: Neural networks training · Experiment · Distributed

1 Introduction

Neural networks are becoming increasingly effective and potential for major
visual tasks such as recognition, detection and segmentation tasks [1,4,7–11].
Larger and Deeper neural networks require more computation at billions of
FLOPs, with dozens or hundreds layers and channels [2–6]. However, inexpen-
sive equipments with low power cost, such as embedded devices, mobile phones,
cameras, robots, etc., can only afford several millions of FLOPs.

The inference time acceleration of deep neural networks on CPU/ARM archi-
tectures has attracted the attention of the deep learning community in recent
years. Many architectures have been presented, such as MobileNet series [12,13],
ShuffleNet [14], FD-mobilenet [15], etc. The computation-efficient models are
designed for very limited computing power at the computational budget of hun-
dreds of MFLOPs, and can run efficiently on ARM-based devices. For instance,
c© Springer Nature Singapore Pte Ltd. 2018
C. Li and J. Wu (Eds.): ACA 2018, CCIS 908, pp. 168–178, 2018.
https://doi.org/10.1007/978-981-13-2423-9_13
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MobileNet v2 [13] runs at about 13 fps using only a single large CPU core of the
Google Pixel 1 phone1 and achieves an ILSVRC 2012 top-1 accuracy of 72.0%.
These lightweight models have provided the possibility of highly-accurate mobile
vision applications.

As shown above, computation-efficient models are quite efficient during infer-
ence time, however, the training efficiency for these models are quite differ-
ent. The small models have different overall computation v.s. memory access
ratios (CMR) compared with the large models, such as VGG, ResNet, Incep-
tion, etc., as illustrated in Table 1. In detail, most small models uses depthwise
and pointwise convolutions instead of regular convolutions, which changes the
CMR basically.

Because of different CMRs, different models fit different types of hardware
platforms. From Table 1, it is shown that compact models have smaller ratios,
which means that for the same amount of memory accesses, compact models can
afford less computation, on the other hand, for the same computation, compact
models need more memory accesses.

Thus, when the small models are trained in GPU, the speedup ratio is not
the same as that in inference time. To further accelerate the models, distributed
training is considered. Distributed training has also achieved great achievements.
For instance, a ResNet-50 [4] model is trained on the ImageNet-1k dataset [16] in
less than 1 h [17,18] using 256 GPUs. And the scalability on the training process
achieves linear speedup ratio.

Fig. 1. Image processing speed (samples/s) on different networks and hardware plat-
forms

1 It is Chipset Qualcomm MSM8996 Snapdragon 821, CPU Quad-core
(4× 2.15/2.16 GHz Kryo).
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In this paper, with extensive experimental results, we will show the training
speed results for the compact neural networks, as shown in Fig. 1. The exper-
iments are across different models and different hardware platforms. Further
different scales of distributed hosts are set up to accelerate the training process,
with up to 16 hosts and 128 GPUs.

In conclusion, we suggest that, first, computation-efficient neural networks
face the memory bound and cannot make full utilization on GPU, and it is a
model structure related problem; second, if you want to accelerate the GPU
inference of the real time task, in which batch size is always one, do not use
compact models; third, training on single host and on distributed cluster is
a loosely coupling problem, and distributed training is beneficial for compact
networks though it cannot overcome the low utilization rate of devices.

2 Related Work

Since AlexNet [8] won the ILSVRC-2012 [16] competition championship, Many
successful deep neural network models have been proposed over the past few
years. ResNet [4] has great recognition capabilities by adding residual connec-
tions between layers, which allows deeper layers and avoids model degeneration.
ResNet-152 can achieve a top-1 accuracy of 78.6%. Another network Inception
[1,2] enhances the expressiveness of the network by aggregating convolution ker-
nels with different sizes and can also achieve a high accuracy.

Although these networks such as ResNet, Inception, etc. can achieve a high
accuracy, the parameters of them are too huge. These computation-efficient mod-
els needs a mount of time to do both training and inference, which are not suit-
able for tasks on mobile devices. Some lightweight networks were proposed for
these scenarios. MoibleNet series [12,13] uses depthwise seperable convolution
[27] instead of traditional convolution, greatly reducing the amount of compu-
tation cost. For MobileNet v2, its top-1 accuracy reaches 72%. SuffleNet [14]
uses pointwise group convolution and channel shuffle operation to reduce com-
putation cost but accuracy doesn’t decay. ShuffleNet-x2 achievess a great top-1
accuracy of 73.7%.

Optimisation in neural network for different platforms is another research
direction. Gysel et al. [19] presented a framework named Ristretto that uses
fixed point arithmetic to represent instead of floating point, which is an effective
method to condense complex models on mobile devices. Mathew et al. [20] uses
convolution sparsifying and fine tuning techniques to do full frame semantic
segmentation on low power embedded devices and get a high speedup.

Another research direction is distributed training acceleration. However,
reducing process in each iteration needs to wait for the slowest node, which
causes communication latency. On the other hand, the mini-batch size will scale
to a large number with the number of nodes increasing, which may leads to a
significant drop in results. Facebook (Goyal et al.) [17] used 256 gpus to complete
the imagenet training with ResNet-50 in one hour. Their strategy of linear learn-
ing rate scaling rule and warmup in initial learning stage effectively maintained
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the accuracy of the results within an acceptable range when the mini-batch size
reached 8K. You et al. [18]. introduced LARS algorithm further increase the fea-
sible mini-batch size limit to 32K and keep the accuracy from falling. They used
512 KNL chips and only took 31 min to complete the training with ResNet-50.

3 Computation, Memory Access and Devices

Due to the differences in hardware platforms, the computation capability of
devices varies. Furthermore, the actual computation capability will also be lim-
ited by memory access wall as demonstrated in the roof-line model [26].

Computational complexity is commonly defined by the number of float-point
multiplication-add operations in a single-image forward propagation. The com-
putation complexity of one convolutional layer is calculated as F 2 ·K2 ·Cin ·Cout

(FLOPs), in which F indicates the spatial width and height of the feature map,
K is the kernel size and Cin, Cout indicates the input and output channel number.

Memory access is defined by the number of memory accesses during a single-
image forward propagation. The number of memory accesses of one convolutional
layer is calculated by weights memory access and output feature map memory
access, excluding caching on chips. And the result is (K2 ·Cin ·Cout+F 2·Cout ·2)·4
(Bytes). Here the activation layers count double for the output feature map
memory access.

Th roof-line model [26] gives a simple prediction for a theoretical computa-
tional efficiency upper bound of a specific models running on a specific device.
The Roof-line model splits two bottleneck areas of memory-bound area and
compute-bound area. The bottleneck inside memory-bound area is the memory
bandwidth, while the bottleneck inside compute-bound area is the computa-
tional capability. And the prediction calculation is shown in Fig. 2 and described
in the following paragraphs.

According to the roof-line model, we use the CMR to depict the computation
intensity, which exhibits how many float-point operations can be performed by
one byte of memory access. A higher CMR means the memory is better leveraged.

3.1 Model Differences

The computational complexity and the memory accesses2 are shown in Table 1.
From the table, it can be observed that (1) compact models have a smaller ratio,
(2) within the same model, different width modifier significantly affects the ratio.

3.2 Device Differences

For instance, a NVIDIA Tesla P100 GPU has 3,584 CUDA cores and 16 GB
memory, with 9.3 TFLOPs single-precision performance and 720 GB/s mem-
ory bandwidth, theoretically. While a NVIDIA GTX 1080Ti has 11.3 TFLOPs
2 Unlike the original papers, the computational complexity and the memory accesses

also include the pooling, lateral and activation layers.
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Table 1. Computation to Memory Access Ratio of Inference (All data are divide by
1e6 from original quantity)

Models Com. (MFLOPs) Mem. Acc. (Mbytes) Ratio (FLOPs/byte)

VGG-16 15470.26 661.76 23.37

ResNet-152 14696.84 518.22 28.36

ResNet-50 4999.61 220.69 22.65

MobileNet 568.74 57.18 9.946

MobileNet-0.5x 149.5 25.45 5.874

MobileNet-0.25x 41.03 11.94 3.436

mbn-v2 307.26 70.65 4.349

mbn-v2-0.5x 80.55 32.84 2.45

mbn-v2-0.25x 25.30 16.09 1.57

ShuffleNet-2x(g3) 514.97 49.31 10.44

ShuffleNet(g3) 135.93 24.66 5.512

ShuffleNet-0.5x(g3) 37.58 12.33 3.048

ShuffleNet-0.25x(g3) 11.19 6.16 1.817

FD-MobileNet-1x 144.49 23.88 6.050

FD-MobileNet-0.5x 40.13 10.11 3.969

FD-MobileNet-0.25x 12.04 4.6 2.617

single-precision performance and 484 GB/s memory bandwidth, and a NVIDIA
Tesla K80 has 8.74 TFLOPs single-precision performance and 480 GB/s mem-
ory bandwidth . In comparison, a Raspberry Pi 3B with (SoC chip BCM2837,
1.2 GHz) has only about 10 GFLOPs computational capability, with 4 ARM
Cortex-A53 1.2 GHz cores (without GPU), and about 3.6 GB/s DDR2 (1 GB)
bandwidth.

Due to the complexity of the architecture of GPU/ARM/CPU and the mem-
ory access patterns cross layers of cache and memory, it is hard to compare
two types of devices directly. In another way, we use a computation v.s. band-
width ratio (CBR) to describe a device. The CBRs of P100, 1080Ti, K80 GPUs
and Raspberry Pi 3B are 12.9FLOPs/Bps (9300 GFLOPs/720 GBps), 23.34
FLOPs/Bps, 18.2 FLOPs/Bps and 2.78 FLOPs/Bps, respectively.

As shown in Fig. 2, the red, blue and yellow lines indicate 1080Ti, P100,
K80, respectively, and the slope of the slash indicates the memory access band-
width. After the computation intensity reach the peak computational capability,
the limitation turns into computation-bound from memory-bound. For instance,
VGG-16 has an computation intensity of 23.37 FLOPs/byte, reaching the com-
putation bound in most of the GPUs, and memory access bandwidth is not the
bottleneck. On the other hand, MobileNet-like models with smaller computa-
tion intensity will reach the memory bound as illustrated in the figure, and can
not make fully use of the GPUs. For example, MobileNet has an computation
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intensity of 9.9 FLOPs/byte, it only gets 9.9 FLOPs/byte · 484 GB = 4.8
TFLOPs peak computational capability when running on 1080Ti GPU. Also,
as shown in Fig. 3, MobileNet is at the compute bound of the CPU. It is can
make full use of CPU/ARM devices, though their peak speed is still much slower
than GPUs.

4 Training and Distributed Training

4.1 Training

During inference, most intermediate results can be dropped after the layer has
been computed. However, the training procedure is memory access intensive.
During training, within each batch, all the intermediate results is reused in the
back propagation. Unfortunately, back propagation is computed from the last
layer back to the first layer, so it is a first-in-last-out (FILO) stack structure, and
the outputs of each layer must be stored until back propagation. In consequence,
the bus bandwidth is a main bottleneck of the training on CPU, which is smaller
than bandwidth inside GPU (the bandwidth of single channel DDR4 2666 MHz
is 21.3 GB/s).

The forward propagation of training is just the same as inference, so the
computational complexity and the memory accesses are the same as inference.
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The backward propagation needs an approximatively double memory access, one
for input layer and another for the intermediate results produced in the forward
propagation. The computational complexity is also doubled, for the same scale
of gradient computation. Under this estimation, the intensive of training is the
same as inference, for simplicity.

4.2 Distributed Training

We use multiple hosts to further accelerate the training process. We train the
network with large mini-batch SGD and distributed parameter servers [21] in
data parallel mode. A bulk synchronous SGD is used to updates the parameters,
while KVstore holds the parameters as key-value pair form in DRAM to keep
the synchronous communications.

We configure the learning rate according to the linear scaling rule [17]: when
the mini-batch size is multiplied by k, multiply the learning rate by k. Gradual
warm up [17] is also used. In order to reduce traffic between nodes, we only
compute the batch normalization locally. Since the experiments is conducted on
a shared storage system, splitting data on each nodes is not needed. Each epoch
randomly selects part of the data of the entire training set. The engine maintains
a queue of write dependencies and a queue of read dependencies. As long as an
operation has no dependencies, it can be executed immediately without waiting.
So the layer level calculation can be performed in a pipelined manner.

Each node in cluster runs both a server and a worker. For a cluster of n
nodes, each node communicates with the other n-1 nodes. The workers pull data
from the server and compute the gradient then send to the server. The servers
receive the data sent by the workers and reduce the result then return to workers.
However, since the total parameter amount are averaged over n nodes, this traffic
does not increase significantly as the cluster size increases, it maintains (n−1)/n
ratio.

5 Experiment

We set up the experiments using MXNet (0.11.0) [22], with different model types,
different hardware platforms and different scale of hosts. We use the ILSVRC
2012 dataset [16] to evaluate the acceleration and effectiveness. Within all the
tests, we set batch size to 32 on per device (GPU/CPU), and set all the input
of the images to 224 × 224.

The models used include ResNet-152/50, MobileNet v1 (1x, 0.5x, 0.25x),
MobileNet v2 (1x, 0.5x, 0.25x), ShuffleNet (2x, 1x, 0.5x, 0.25x, with group 3),
FD-MobileNet(1x, 0.5x, 0.25x), etc. Here the scale of MobileNet 1x is as the
same level as ShuffleNet 2x, and MobileNet 0.5x, ShuffleNet 1x, FD-MobileNet
1x are at the same level.

The hardware platforms include NVIDIA Tesla K80 GPU (Kepler architec-
ture), NVIDIA GeForce GTX 1080 Ti GPU (Pascal architecture), etc. Also,
we choose Intel CPU to test different intensity. The CPU platform is Intel
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E5-2690 v4@ 2.60 GHz CPU (28 cores) with MKL accelerated, and the main
memory is 128 GB, is 8x 16 GB DDR4 and the total bandwidth is over 80 GB/s
bandwidth.

The hosts scales include single host, and up to 32 hosts. The distributed
scales are set up by hosts with 2x K80 (totally 4 GPUs in one host), however,
for experiment requirement we only use one GPU inside. The interconnected
network is InfiniBand [23]. Also, the storage use a distributed SAN [24] server.

5.1 Single Host Result and Analysis

From Table 2, it is shown that the GPU utilization rate is very low when training
compact. And the result shows that the device utilization is also positive correl-
ative to the computation intensity. Here we estimate the training computational
complexity as triple as that of inference.

However, the roof-line model is a theoretical model to depict the up bound of
the model run on a device. In practice, the speed of training is affected by many
other factors as cache size, implementations of convolution operation, depth-wise
operation, GEMM [25] operation.

Table 2. Computation Time on Single Host. M.MF.: Models Training MFLOPs, I.:
Intensity, sam./s: Samples processed per second, GF/s: GFLOPs processed per second

Models M.MF. I. 1080 Ti K80 E5

sam./s GF/s sam./s GF/s sam./s GF/s

ResNet-152 44090.5 28.36 53.31 2350.5 20.77 915.8 3.07 135.4

ResNet-50 14998.8 22.65 169.85 2547.5 51.13 766.9 7.08 106.2

MobileNet-1x 1706.2 9.95 397.2 677.7 139.34 237.7 11.86 20.2

MobileNet-0.5x 448.5 5.87 545.94 244.9 287.6 129 22.3 10

MobileNet-0.25x 123.1 3.44 644.72 79.4 517.39 63.7 39.13 4.8

mbn-v2-1x 921.8 4.35 314.08 289.5 115.31 106.3 8.52 7.9

mbn-v2-0.5x 241.7 2.45 460.8 111.4 208.94 50.5 16.04 3.9

mbn-v2-0.25x 75.9 1.57 522.23 39.6 337.77 25.6 28.44 2.2

ShuffleNet-2x(g3) 1544.9 10.44 255.21 394.3 89.35 138 9.68 15

ShuffleNet-1x(g3) 407.8 5.51 387.82 158.2 178.88 72.9 18.53 7.6

ShuffleNet-0.5x(g3) 112.7 3.05 528.78 59.6 296.45 33.4 32.41 3.7

ShuffleNet-0.25x(g3) 33.6 1.82 569.2 19.1 418.23 14.1 54.01 1.8

FD-MobileNet-1x 433.5 6.05 581.39 252 438.21 190 36.02 15.6

FD-MobileNet-0.5x 120.4 3.97 651.59 78.5 590.96 71.2 60.71 7.3

FD-MobileNet-0.25x 36.1 2.62 688.88 24.9 642.98 23.2 91.77 3.3

5.2 Distributed Result and Analysis

In Table 3, the result is the computation speed on distributed cluster with syn-
chronous method. The result is average samples processed per second of models
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on different scale of hosts, the data inside the brackets indicates the speed of each
single host. The results show that each models achieve the linear speedup in the
distributed acceleration. Full experiments validate the synchronous distributed
method get the same performance on the ILSVRC accuracy.

Table 3. Computation Speed on Distributed Hosts (average samples processed per
second on each host)

Models 1host 2hosts 4hosts 8hosts 16hosts

ResNet-152 20.77 38.9(19.4) 80.5 (20.1) 159.4(19.9) 249.9(15.6)

ResNet-50 51.13 97.8(48.9) 200.1 (50.0) 400.8(50.1) 776.4(48.5)

MobileNet-1x 139.3 274.8(137.4) 553.0 (138.2) 1113.3(139.1) 2212.2(138.2)

MobileNet-0.5x 287.6 569.1(284.5) 1146.9(286.7) 2281.8(285.2) 4543.0(283.9)

MobileNet-0.25x 517.3 1011( 505.5) 2016.6(504.1) 4090.2(511.2) 8164.4(510.2)

mbn-v2-1x 115.3 227.5(113.7) 455.7 (113.9) 907.7(113.4) 1811.8(113.2)

mbn-v2-0.5x 208.9 420.1(210.0) 844.8 (211.2) 1689.0(211.1) 3363.7(210.2)

mbn-v2-0.25x 337.7 674.9(337.4) 1370.7(342.6) 2719.2(339.9) 5425.8(339.1)

ShuffleNet-2x-g3 89.35 177.8(88.9) 361.1 (90.2) 718.4(89.8) 1202.8(75.1)

ShuffleNet-1x-g3 178.8 357.8(178.9) 723.4 (180.8) 1441.6(180.2) 2134.0(133.3)

ShuffleNet-0.5x-g3 296.4 592.4(296.2) 1211.4(302.8) 2414.4(301.8) 4282.9(267.6)

ShuffleNet-0.25x-g3 418.2 833.8(416.9) 1687.2(421.8) 3326.0(415.7) 6633.4(414.5)

FD-MobileNet-1x 438.2 859.6(429.8) 1761.5(440.3) 3499.9(437.4) 6451.2(403.2)

FD-MobileNet-0.5x 590.9 1063.8(531.9) 2120.2(530.0) 4636.7(579.5) 8885.6(555.3)

FD-MobileNet-0.25x 642.9 1121.8(560.9) 2223.3(555.8) 5054.2(631.7) 9935.0(620.9)

6 Conclusion

In this paper, we suggest that, first, computation-efficient neural networks face
the memory bound and cannot make full utilization on GPU, and it is a model
structure related problem; second, if you want to accelerate the GPU inference
of the real time task, in which batch size is always one, do not use compact
models; third, training on single host and on distributed cluster is a loosely
coupling problem, and distributed training is beneficial for compact networks
though it cannot overcome the low utilization rate of devices.
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Abstract. In recent years, in-memory key-value cache systems have
become increasingly popular in tackling real-time and interactive data
processing tasks. Caching systems are often used to help with the tem-
porary storage and processing of data. Due to skewed and dynamic
workload patterns, e.g. data increase/decrease or request changes in
read/write ratio, it can cause load imbalance and degrade performance
of caching systems.

Migrating data is often essential for balancing load in distributed stor-
age systems. However, it can be difficult to determine when to move data,
where to move data, and how much data to move. This depends on the
resources required, e.g. CPU, memory and bandwidth, as well as polices
on data movement. Since frequent and global rebalance of systems may
affect the QoS of applications utilizing caching systems, it is necessary to
minimize system imbalances whilst considering the total migration cost.
We propose a novel distributed load balancing method for the main-
stream Cloud-based data framework (Redis Cluster). We show how dis-
tributed graph clustering through load balancing can be used to exploit
varying rebalancing scenarios comprising local and global needs. Dur-
ing the rebalancing process, three phrases are adopted — random walk
matching load balancing, local round-robin migration and data migration
between the trigger node and new added servers. Our experiments show
that the proposed approach can reduce migration time compared with
other approach by 30s and load imbalance degree can be reduced by 4X
when the locality degree reaches 50% whilst achieving high throughput.
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1 Introduction

A high-performance in-memory key-value caching system is often very important
to provide high throughput and low latency services. There is an ever-growing
number of key-value data sets that need to be stored and served in in-memory
systems, e.g. for real-time applications. The rapid growth in GET and PUT
requests associated with these system models, demands a linearly scalable system
with low overheads. The important problem is that the variability in workloads
and associated cluster expansions can create unbalanced loads that degrade the
latency and negatively impact on the overall throughput of the system. Prior
research has demonstrated that load imbalances can result in more than 60%
degradation in throughput and 300% degradation in latency [1,2].

There is thus a need for scaling a in-memory key-value stores, while tackling
highly skewed and dynamic workloads. Skewed workloads can lead to severe load
imbalances, which can result in significant performance degradation. Dynamic
workloads can also cause more server node to be added which will waste the
resources and cost more money. As an application executes, database workloads
may change rapidly, e.g. from read-heavy to write-heavy workloads, zifp query
distribution et al. A load balancer should be configurable to deal with diverse
workloads and ideally optimize such configurations depending on the demand.

Consistent hashing [3] can help balance static resource utilization, however
it is unsuitable for dynamic workload patterns. Several technologies have been
proposed for handling data-driven load balancing including data replication and
caching in the network layer, or data migration. Selective replication is used
to replicate frequently used (hot) items to additional storage nodes. This will
consume more hardware resources (storage) and require potentially complex
mechanisms for data movement, data consistency, and query routing to deal
with the load. Placing a front-end cache (or an array of frontend caches) is
also a common way to cache such popular items whilst leveraging the additional
hardware resources. Caching O(NlogN) items is sufficient to ensure that the load
on servers is uniform [4]. Data migration or hash space adjustment is a common
technique to mitigate load imbalances for in-memory key-value caching system.

In this paper, we present a case study using the popular Cloud-based tech-
nology, Redis Cluster [5]. Redis Cluster is a very popular in-memory key-value,
scalable storage system. Our goal is to demonstrate the system can remain in
a balanced state, even when the amount of data grows, or when the access
and usage patterns are changed. We demonstrate how it is possible to opti-
mize (minimize) the addition or removal of servers that are required. In the
distributed environment, it is hard to establish an efficient policy to rebalance
the data-driven workloads, since the related information is constantly updated.
Specifically, this paper offers the following novel contributions:

– We propose a lightweight, decentralized rebalancing mechanism to collect
minimal statistical information needed for data migration. This is achieved
through a non-aggressive and relatively fair load balancer, which reacts only
if one node is severely overloaded after distributed graph clustering by load
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balancing, it swaps and migrates load evenly to the under-loaded nodes in
the same locality.

– We trade off load balancing and necessary scalability required for perfor-
mance. This means that adding new servers can be delayed as much as pos-
sible until all nodes are almost overloaded.

– We present experimental results show that performance can be improved
when data migration occurs compared with baseline greedy balancer.

This paper is organized as follows. Section 2 gives an introduction to the
background and presents the motivation for the work in more detail. Section 3
describes our proposed methods and explains how we are able to improve sys-
tem load balancing. Section 4 presents the experimental results of applying the
method. Section 5 introduces the related work and finally Sect. 6 concludes the
paper as a whole and identifies areas of potential future work.

2 Background

2.1 Load Rebalancing Process

Load rebalancing process should be done in two steps. The first step is to com-
pute the current load distribution which can be done offline and periodically.
The second step is to make new assignments including replications or migra-
tions based on the precomputed load of the first step. There is a challenge that
the second step could be finished in a short time such as several milliseconds
in order not to stop the cloud service. A near-perfect balance and process cost
minimization are needed for cloud services.

2.2 Load Rebalacing Method for Redis

Typical in-memory key-value caches use consistent hashing to map keys to cache
servers. Instead of directly mapping items to physical nodes, Redis Cluster calcu-
lates the result of CRC16 of key modulo 16384 and puts it into logical units called
slots depending on the hash value. The physical placement of slots on nodes are
undertaken in another separate procedure by Redis Cluster. This decoupling of
the logical and physical placement enables transparent data movement, which
avoids the need for immediate rehashing of data during cluster expansion and
thus is convenient for rebalancing.

Master-slave replication of Redis Cluster cannot be used for handling skew
workload and load rebalancing. Based on the popularity of slots, it is hard to use
multi-master replication for slots since one slot just belongs to one node. Hence
we need to migrate hot slots to under-loaded nodes.

2.3 Motivation of New Method

If sharding key distribution is not even or request rates vary greatly, then this
can give rise to load imbalances between nodes. When load imbalances occur,
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Fig. 1. Load imbalance scenarios from different loads for slots

the Redis Cluster can reshard partitioning through constant tuning over time
manually. Ideally, a cache system should automatically learn and reassign the
partitions based on their changing workloads.

Figure 1 shows an example of node load imbalance scenarios. The number in
the rectangle represents the load of each slot. Redis Cluster itself can not provide
load balancing for this case. Centralized algorithms for modifying Redis Cluster
may result in lots of data migration to perform the rebalance. When workload
patterns are changed or cluster expansion occurs, data has to be rebalanced
across the cluster. The total cluster overheads can be significant since the node
number can be up to 1000 in Redis Cluster. Hence a decentralized and low-cost
migration method for Redis Cluster would also be highly beneficial.

For example, if there is a mechanism taken that Node 1 and Node 4 will
average their loads through swapping between slot 1 and slot 11 based on the
load shown in Fig. 1, on the other hand, Node 2 and Node 3 can average their
loads, it will create a perfect load balancing. Even if Node 1 can not match
Node 4 for the first time, we hope that the mechanism can enable all the nodes
to undertake the approximate average load after multiple round iterations.

However, when workload change occurs every time, it will cost a lot of system
overheads because of global iterations, and so localization can do a better job
under the condition. The cluster manager can divide the cluster and keep all the
local clusters balanced first. When the load changes a little, to rebalance the local
cluster is just needed. This achieves better time efficiency and less exchanged
messages than a whole cluster data migration.

3 Design and Implementation

Figure 2 gives an overview design of Redis Cluster load balancer system. In Redis
Cluster, all the nodes are connected using a TCP bus and a binary protocol. They
form a fully connected graph. The system is composed of three main components.

Client Component: the Client Component performs two main jobs include
initiating client requests and caching key-to-slot mappings. Clients are able to
perform operations similar to existing Redis, e.g. GET, PUT and DELETE.

New Mapping Component: when the rebalancing process finishes, it will
receive a new mapping from the Redis Cluster and update the client-side
mapping.
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Fig. 2. Architecture for redis rebalancing

Redis Cluster Component: is the most important component in the system.
This component generates the key-value replies to client queries and executes
the load balancer. Every server in the cluster will initiate the migration when
a local condition is met, i.e. the load migration process is not centralized. The
load balancer is responsible for coordinating the load balancer process. It uses
a random walk matching method for averaging the load and then divides the
servers into multiple clusters while keeping the load balanced. Every node com-
putes and gets the load information ranking of its neighbours, i.e. nodes in the
same subgraph. When one server triggers the rebalance process, data migration
will happen again between the server and its neighbours.

In this section, we present the details on how we tackled the problems men-
tioned in Sect. 2.3. Specifically, we propose a new approach called global-local
rebalance. We present the details and implementation of this approach in the
following sections. Ultimately, the system design and implementation has to
meet three basic requirements: low movement between high bandwidth nodes,
per-node storage efficiency, and minimize the request deviation.

3.1 Global-Local Rebalance

The following notation in Table 1 are used to describe the approach.
While Redis Cluster nodes form a full mesh, nodes also use a gossip protocol

and a configuration update mechanism.
The global phrase (Phase 1) is used for early load balancing, which has

been studied in the computation [6] and implementation for distributed graph
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Table 1. Notations for rebalance

Symbol Description

N Number of nodes

S Number of slots

K Number of clusters

Li Load for node i

Lj Load for slot j

AL Average load for the total system

Ht High load threshold

Lt Low load threshold

MSj
i Least slot load generated by slot j in node i

λ Resource usage ratio of read to write

RRj
i Read request rate for slot j in node i

WRj
i Write request rate for slot j in node i

Ui CPU utilization for node i

clustering by load balancing finishes in a poly-logarithmic number of rounds.
It establishes a partition of the graph close to an optimal partition based on a
random matching model of load balancing. The approach sets the graph edges
according to the available bandwidth. If the communication bandwidth is high,
then the edge is set to 1 else 0. When two nodes match in a round, the averaging
load procedure can finish by swapping some slots. Finally, each node is assigned
by a cluster label. Through the algorithm, we get k-clusters with balanced size
as shown in Fig. 3. Two nodes belong to the same cluster only if they have the
same cluster label.

The local phrase (Phase 2) in the Algorithm1 provides the local load bal-
ancing when one node becomes over-loaded over the time. When localities are
formed, each server shares its load with other servers in its vicinity and migrates
loads between the neighbours. Local data migration can occur using a round-
robin approach. When the load on a node reaches a high threshold, it will try
to swap and migrate enough of its load to make the load even across the local
cluster. Swapping such slots can keep the memory usage balanced.

Fig. 3. Random localities



www.manaraa.com

Distributed Data Load Balancing for Scalable Key-Value Cache Systems 187

Server addition phrase (phase 3) is only carried out as a last resort in the
algorithm. If the rebalancing can be done without additional servers, the effi-
ciency of the existing cluster increases. If the load of the trigger node is still
higher than the upper threshold, then new servers are added in the local vicinity
and the migration continues (once these are provisioned).

Algorithm 1. Rebalancing Algorithm
//Phase 1: Decentralized Graph clustering, initialize load balancing

Require: N nodes, M overloaded nodes M<<N
Ensure: K clusters C1,...,Ck, finishes in O(logN) rounds and implements early load

balancing
//Phase 2: Local rebalance concurrently according to the dynamic workload
//Phase 2.1: For any cluster i, choose several slots from the largest to smallest and
place them into a pool s from an overloaded node as a trigger node t
while Lt > Ht do

Choose several slots out of node to make the load Lt down to Lt
end while
//Phase 2.2: Swap and migrate the slots to low load neighbors in the same cluster
for node n in low load pool and slot s in migration pool do

if Ln + (Ls - MSj
n) slot load difference < ALi then

migrate(s, t, n)
migrate(j, n, t)

end if
end for
//Phase 3: Add one or more servers into one location if the migration pool is not
empty
if Lt > Ht then

add new server i and migrate(s, t, i)
if Li < ALi then

put node i into low load pool
end if

end if

Since we consider items in the cache are all small sized key-value pairs that
are evenly distributed based on the number of slots and total slot memory usage,
the memory resource for each migration unit is considered to be similar, hence
the CPU utilization becomes the most important metric. We calculate the utility
load for node and slot as the following functions. As such, we can swap the slots
to achieve the same memory utilization whilst reducing the CPU utilization.

Li = RRi ∗ λ + WRi ∗ (1 − λ) + Ui (1)

Lj = RRj
i ∗ λ + WRj

i ∗ (1 − λ) (2)
for λ < 0.5 (3)

Distributing data for balancing requires spreading hot and cold data evenly
across the cluster. In order to efficiently adjust the load, random localities are



www.manaraa.com

188 S. Chen et al.

formed to divide cache servers into smaller groups. Each locality contains several
servers and each server’s neighbours given as a subgraph from the full connected
graph. Figuring out a good threshold is crucial for the balancer. The parame-
ter values Ht and Lt can be adjusted according to AL. Every node maintains
statistical information for itself and its slots, including key-value read and write
access (via sampling). These are collected periodically and at a high frequency.

During migration maintaining consistency is essential. While keys in one slot
are being migrated, operations on keys will generate a TRYAGAIN error based
on the Redis Cluster documentation. Once the rebalance process is completed,
key-to-node mapping changes are stored temporarily to guarantee that all clients
are able to see and cache the new mapping in an appropriate and short period
of time.

Our method is useful especially if a large number of servers in different clus-
ters are overloaded simultaneously, since the algorithm uses a partitioned graph
as its core rebalancing structure and nodes in the graph can automatically inform
their neighbours of updations and migrations that are taking place.

4 Experimental Results

4.1 Test Environment

In our experiments, we use Redis 3.2.0 as the implementation platform for
the rebalancing performance evaluation. We use the benchmark YCSB (Yahoo!
Cloud Serving Benchmark) [7] to test the performance of the original Redis per-
formance and the performance after rebalancing. We explore the evaluation of
the algorithm using a 6-node and a 10-node cluster.

Table 2. Hardware and software configurations

CPU Intel(R) Xeon(R) E5645 CPU 2 X 6 @ 2.40 GHz

Memory 64 GB DDR3 @ 1333 MHz

Disk 3× 1 TB SATA disk

Network Intel(R) PRO/1000 Network Connection @ 1 Gbps

OS CentOS 6.2

The hardware and software configurations for each service node are listed
in Table 2. During the experiments, we predominately used QPS (number of
operations per second) to evaluate the throughput performance together with
the time to assess the effectiveness. In this paper we consider a node to be
under-loaded when the memory usage is less than 50% of the max capacity and
the request rate is less than the average rate. It is noted that all slots serve all
operations such as PUT, GET and DELETE, so the capacity and the request
rate would be changed when the slot size varies.
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4.2 Global-Local Rebalancing Model Analysis

Degree of Load Imbalance. The maximum/average metric quantifies the degree
of load imbalance. Our algorithm adopts a non-aggressive and efficient way to
reduce the degree of load imbalance across the cluster by removing heavily-loaded
slots from over-loaded servers.

Degree of Localisation. The average number of local servers is N/K. Servers in
different locations can migrate slots in parallel without interference. All servers
in a given localised partition are in geographical proximity to one another, so
slot transferral to other servers in one locality is more efficient when considering
the overheads of networking, bandwidth and the associated latency issues that
can arise.

Baseline Greedy Balancer. When one node resource utilization reaches a given
threshold, it initially adds a new server and migrates half of its load to the new
one. Although the trigger node can migrate half of their load as soon as they
are able, the total load on the cluster can be uneven because other server loads
are not changed. This can result in a reduction of resource utilization.

Costs and Benefits. Costs can include message exchanges which will effect the
network traffic. In our algorithm, message exchange cost complexity of global
graph clustering is O(T·n·klogk) when the process finishes in T rounds with n
nodes and k clusters. The global data migration time is also proportional to the
number of rounds (T). Local message costs also include data transfer overheads
to the specific locations selected for migration. And the benefits mainly refer to
the performance improvement observed as a result of the reduction in the degree
of imbalance.

4.3 Workload and Metric

In our experiment, we evaluate the migration performance and costs. A Zipfian
(with parameter 0.99) workload of 100% read was used for the test generated by
YCSB.

When the rebalancing process is complete, the system performance is
improved. However, the process is time-consuming and influences the overall
performance. It is important to rebalance loads quickly. Thus migration time
and response time are important metrics to measure the overall performance.

Migration Time and Response Time. We quantify migration time as a
form of resource consumption cost, which indicates the amount of time needed
to execute a rebalancing process. We can also calculate the migration speed
according to the amount of data transferred during the migration. The response
time is the amount of time it takes from when a client request was submitted
until the first response is produced.

In the experiment we observe how response time changes during the migra-
tion of slots from one node to another in Redis Cluster. To explore this, we
loaded 90,000 keys into two nodes and 0 in all the other (four) nodes. After the
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Fig. 4. Response time for migration slots

client queries commence and exceed a given threshold on one of the servers, the
migration process is triggered until it finishes.

The cluster was divided into two localities. The migration was initiated at
10 s as presented in Fig. 4. We observe that in the beginning of the migration
process there is a great increase in time taken, while at the end of process an
obvious decrease appears. The trend is similar for the baseline half-migration
and the approach using global-local rebalancing. However, our approach reduces
migration time and peak response time compared with the half-migration base-
line by 30s and 0.4ms. Our method can achieve shorter migration time and lower
response time because one heavy node can migrate slots to the other two nodes
evenly in the same locality which is different from the half-migration baseline.

Load Balancing and Resource Utility. Our method outperforms a baseline
greedy balancer in term of load balancing (max/avg). We can roughly get load
imbalance values of 1 and 1.5 respectively. In fact, the half-migration method
tends to balance load at the cost of increasing the number of servers, however
resource utility is actually inversely proportional to the number of servers.

Locality Degree. Here we use the percentage of the number of nodes in the
trigger node at a given location compared to the number of nodes in the entire
cluster. In this case, we extend the cluster to 10 nodes.

Figure 5 shows the load balance degree and the throughput with varying
degrees of localisation. When the locality degree reaches 100%, we have full,
global load balancing. Full global load balancing may produce the near-perfect
balance, however the cost of the load information, data transferal and slot
migrating is great. Therefore, it is unnecessary to perform global load balancing,
and then tune a suitable locality degree parameter to subsequently minimize the
inter-locality communication and migrate slots efficiently. In the experimental
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Fig. 5. Overall performance with varying degrees of locality

results, we observed that putting 50% of the nodes in the same locality offers the
best performance, i.e. 5 out of 10 nodes should be co-located. Load imbalance
degree can be reduced by 4X and high throughput is also achieved when the
locality degree reaches 50%.

5 Related Work

Two load-balancing techniques offering consistent hashing and hot-content repli-
cation to mitigate load skew and improve cache performance were presented in
[8]. Autoplacer [9] leverages self-tuning the data placement in replicated key-
value stores to identify the right assignment of data replicas to nodes and to
preserve fast data lookup, which is six times better than static placement based
on consistent hashing. To reduce the skew workload, data has to be reliably
replicated. Replication also can make the system more available in the pres-
ence of failures, however, it will also increase the storage costs and demand for
replication consistency.

The caching layer can be used to balance the disk- and flash-based stor-
age, however server-based caching is unsuitable for in-memory stores as there
is little difference in performance between the caching and storage layers. Net-
Cache [10] offers a new key-value store architecture that leverages the power
and flexibility of new-generation programmable switches to cache data in the
network. The disadvantage of the solution is that the architecture cannot han-
dle write-intensive workloads. NetKV [11] has been designed and implemented as
a scalable, self-managing, load balancer for memcached [12] clusters that exploit
Network Function Virtualization (NFV) to provide efficient, software-based hot
key packet processing. Splitting large items into independent chunks and han-
dling each chunk independently is a common mitigation solution, however, it is
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not effective for many key-value cache systems, e.g. those with many small size
items and a few large items [13].

Migrating data units is a useful method for balancing load, but it is dif-
ficult to implement in fully decentralized load balancers whilst low migration
costs. Many works rely on a centralized proxy to dispatch the rebalancing pro-
cess. MBal [2] offers a holistic solution whereby the load balancing model tracks
hotspots and applies different strategies including key replication, server-local or
cross-server coordinated data migration. However, it is not a distributed migra-
tion method. Mantle [14] decouples policy from mechanisms to let the designer
inject custom load balancing logic. This offers a form of resource migration for file
system metadata. In a novel way, Meezan [15] replicates popular objects to mit-
igate skewness and adjusts hash space boundaries in response to dynamic loads
of memcached systems. Ambry [16] presents a scalable Geo-Distributed Object
Store, which leverages techniques such as asynchronous replication, rebalancing
mechanisms, and zero-cost failure detection. [17] presents a multi-resource load
balancing algorithm for distributed cache systems by redistributing stored data.
RackOut [18] uses a memory pooling technique that leverages one-sided remote
read primitives of emerging rack-scale systems to mitigate load imbalances for
scalable data serving. The Meta-Balancer framework [19] is proposed to auto-
matically decide on the best load balancing strategy according to the application
characteristics.

Load imbalances can increase as the number of shards increase [20] and when
the number of keys is constant. This work also demonstrates how unnecessary
distributions can hurt performance from theoretical analysis. Overbalancing is
also not a good way to tackle load imbalances. Our work establishes a full and
non-aggressive distributed way to perform data rebalancing.

6 Conclusions

To achieve optimal load balancing, a distributed and non-aggressive load bal-
ancing method was presented and explored with Redis Cluster. The method
improves resource utilization and ensures higher scalability. Our analysis and
experimental results show that a global-local rebalancing policy can gain bet-
ter performance compared to baseline metrics due to the observed reduction in
overheads demanded of many load balancing processes. We will study the system
load balancing performance on a cloud cluster.
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Abstract. REgularised LIkelihood OptimisatioN (RELION) is one of
the most popular softwares used in single particle cryo-EM structure
determination. Although efforts have been made to optimize the work-
flow of RELION, the refinement step still remains as a bottleneck for our
exploration of performance improvement. In this paper, we thoroughly
analyze the cause of the performance bottleneck and propose correspond-
ing optimization for performance speedup. The experiment results show
that our approach achieves a speedup of 3.17× without degrading the
resolution.

Keywords: Cyro-EM · Performance analysis and optimization
Relion

1 Introduction

Cryo-electron microscopy (cryo-EM) is a powerful technology for determining the
3D structure of individual proteins and macromolecular assemblies. The technol-
ogy includes various steps from getting samples of proteins to get the final high
resolution of partible 3D models. Although the technology can build a protein
model with high resolution, the determination step is extremely computational-
intensive. To fulfill the computation requirements, various cyro-EM software
with different trade-offs are proposed, such as SPIDER (1981) [4], FREALIGN
(2007) [5], EMAN2 (2007) [16], SIMPLE (2012) [2], RELION (2012) [14] and
cryoSPARCRC (2017) [12]. Among all the software, RELION is most widely
used for its objective and high-quality results in this field [6,10,18].

RELION (Regularized Likelihood OptimizatioN) implements a Bayesian app-
roach for cryo-EM structure determination, which is one of the most popular
methods for cryo-EM structure determination. It introduces pipelined workflow
to automatically perform all the analysis work with high efficiency [3]. To lever-
age the emerging computation power from parallel architecture, Su et al. imple-
ments GPU-enhanced parallel version of RELION (GeRelion [15]), which can
handle the massive computational loads and the growing demands for processing
c© Springer Nature Singapore Pte Ltd. 2018
C. Li and J. Wu (Eds.): ACA 2018, CCIS 908, pp. 195–209, 2018.
https://doi.org/10.1007/978-981-13-2423-9_15
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much larger cryo-EM datasets. Furthermore, Dari et al. [7] present an improve-
ment of RELION, where GPUs are used to process the most computationally
intensive steps to overcome the bottleneck of limited throughput. Moreover, a
new software version over the origin RELION is proposed by the same research
group (RELION-2 [7]) that dynamically allocates the memory requirement on
GPUs to utilize the hardware better and improve the efficiency of the compu-
tation. Although the above works are proposed to optimize the performance of
RELION for cryo-EM structure determination, there is still a large space left
for performance optimization to meet the ever-increasing demands for process-
ing even larger cryo-EM datasets. In this paper, we focus on the performance
analysis and optimization of the cutting-edge RELION-2 software. Through com-
prehensive performance analysis, we identify several performance bottlenecks of
RELION-2 and propose corresponding code and configuration optimizations,
which significantly improves the performance of RELION-2.

Specifically, this paper makes the following contributions:

– We analyze the performance of RELION-2 and identify that the bottlenecks
are GetFourierTransforms in expectation step and Pipe & Memon algorithm
in maximization step.

– We propose several optimization strategies for improving the performance of
RELION-2, including calculation redundancy optimization, GPU acceleration
and CPU binding.

– We evaluate the performance of RELION-2 after applying the proposed
optimizations, which achieves a speedup of 3.17× without degrading the
resolution.

The remainder of this paper is organized as follows. In Sect. 2, we provide the
bottleneck analysis of RELION-2. Section 3 presents the optimization strategies
of our approach. Section 4 elaborates the experiment setup and analyzes the
experimental results. Section 5 describes related work and Sect. 6 presents the
conclusion from this paper.

2 Bottleneck Analysis

2.1 Execution Model Analysis

The design of RELION-2 is mainly composed of maximization (M-step) and
expectation (E-step). Since the E-step is the most computation intensive step,
we focus our study on E-step in this paper. The parallel E-step execution of
RELION-2 adopts Master-Slave mode, which is described in Fig. 1. We can see
that jobs are distributed for parallel processing through two steps. First, master
process splits the input data as well as the computation across the slaves and
sends the job as well as the data to the corresponding slave process. Then, each
slave process spawns several threads on the CPU socket of each node. Each
thread is able to launch GPU kernels for execution acceleration concurrently.
To achieve load balance, the master process sends job and data whenever the
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slave process reports that it has no job remained to be done. This design of job
assignment is also robust towards node anomaly. In case of node anomaly, other
slave processes can dynamically pick up the jobs to mitigate the performance
slowdown of abnormal nodes.

Master (Process 0)

Slave 1 (P2) Slave 2 (P3)Slave 0 (P1) Slave 4 (P4)

Thread

Thread

Thread

……

Thread

GPU
 0

Divide jobs to 
thread jobs

Thread

Thread

Thread

……

Thread

GPU
 1

Thread

Thread

Thread

……

Thread

GPU
 0

Thread

Thread

Thread

……

Thread

GPU
 1

Master give job data to slave when slave has no data/job to process

Node 0 Node 1

Fig. 1. The Master-Slave mode of RELION-2 (E-step).

2.2 Bottleneck Identification

To identify the performance bottlenecks of RELION-2, we first analyze the exe-
cution behavior across slaves to see if they achieve the load balance as expected.
Specifically, we measure the waiting time of each slave process within E-step. The
waiting time indicates the load imbalance among slaves indirectly. Ideally, the
waiting time should equal to zero, which means each slave process progresses at
the same pace and the load is perfectly balanced. However, as shown in Table 1,
the waiting time across slaves is high skewed, with the longest waiting time more
than 12× longer than the shortest waiting time. This means the slave processes
still suffer from the load imbalance in RELION-2. The reason is that although
the dynamic job distribution mechanism in RELION-2 is designed for load bal-
ance, it is still unable to handle the data skew that causes the imbalance across
slaves. The data skew exists intrinsically because each image may have different
valid orientations for E-step that leads to large variance of computation time.
On the other hand, if we take the ratio of waiting time to the entire E-step exe-
cution time into account, the waiting time only takes up a small fraction of the
execution (less than 3.2%) as shown in Table 1. Therefore, the load imbalance
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across slaves should not cause severe performance problem and thus is omitted
in our optimization.

Table 1. Waiting time of slave processes within E-step.

Slave Rank Total wait time (s) Ratio within E-step (%)

1 1.692 0.26%

2 2.135 0.33%

3 20.953 3.20%

4 15.773 2.41%

5 15.123 2.31%

6 14.884 2.27%

7 1.927 0.29%

8 15.029 2.29%

To further understand the performance behavior of RELION-2, we run it
on our local CPU-GPU cluster (setup details in Sect. 4.1) and analyze the per-
formance bottleneck using Intel VTune [13]. Figure 2(a)–(c) shows execution
hotspot results in three execution stages such as class2D, class3D and auto-refine.
From Fig. 2(a)–(c) we can see that although E-step has been largely optimized
in RELION-2, it is still a bottleneck across all three execution stages. As we
further dig into the execution of E-step, we get the execution time break down
shown in Fig. 2(d). In Fig. 2(d) we can see that GetFourierTransforms subrou-
tine dominates the E-step across all three execution stages, taking up 45%, 50%
and 40% of the E-step execution time respectively. Whereas storeWeightedSums
and getAllSquaredDifferences1 subroutines are the second and third largest per-
formance bottlenecks across the execution stages.

In addition, we further investigate the M-step with hotspot analysis in
class3D and refine3D stages, which takes 18% and 26% of the entire execution
respectively. As shown in Fig. 3, doGridding subroutine takes up 65% and 90%
of the M-step execution in class3D and refine3D respectively. This subroutine
implements the Pipe & Menon algorithm [11] and thus the performance bottle-
neck of M-step. We notice that in class3D and refine3D, other step also takes
up a notable portion of the entire execution time besides E-step and M-step as
shown in Fig. 2. As we analyze the profiling results from VTune, we find that
applyPointSymmetry subroutine and frequent math function calls dominate the
execution time besides M-step and E-step in class3D and refine3D stage respec-
tively.
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Fig. 2. Hotspot analysis of different execution stages in RELION-2.
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3 Optimization Strategies

Based on the bottleneck analysis results in Sect. 2, we propose several optimiza-
tion strategies including calculation redundancy optimiztion, GPU acceleration
and CPU binding to mitigate the performance bottlenecks in RELION-2, which
are elaborated in the following sections.

3.1 Calculation Redundancy Optimization

As we discussed in Sect. 2.2 during bottleneck identification, the frequent math
function calls consume a notable fraction of RELION-2 execution time. We
investigate further of these math function calls and identify hotspot function
selectOrientationsWithNonZeroPriorProbability, which searches for all possible
orientations in previous iteration and defines which orientations to be further
calculated. The algorithm of this function is listed in Fig. 4(a).

Within the hotspot function, Euler angles2direction function contains sin
and cos math operations and gaussian1D calculates square root of sigma value
and exponents to get 1D Gaussian value for diffang, which are shown with the
yellow lines in Fig. 4(a). The output part of the algorithm is highlighted in green,
which produces pointer dir nonzeroprior, directions prior, superior and best idir
for further calculation. After analyzing this algorithm, we identify the highlighted
code dominates the computation.

We observe that the calculation of Fig. 4(a) is inefficient due to the frequent
calls of expensive math functions in the loop without considering the loop invari-
ant calculations. Specifically, we can see that line 3, 7 and 8 inside gaussion1D
are loop invariant calculations, however calculated repeatedly inside the loop.
These lines of code can be moved out of the loop to pre-calculate the corre-
sponding values before entering the loop (shown in line 1, 3 and 4 in Fig. 4(b)).
In addition, the condition statement in line 2 in Fig. 4(a) can also be moved out
of the loop since the condition is invariant across iterations (shown in line 5 in
Fig. 4(b)).

Moreover, we find an interesting behavior of the algorithm is that the pos-
sibility of executing line 9–12 in Fig. 4(a) is quite low. This means most of the
ACOSD calculations are not used later in this algorithm. After analyzing the
ACOSD function, we realize it is a monotonically decreasing function. Therefore,
the condition comparison in line 8 in Fig. 4(a) that requires ACOSD calculation
can be modified to line 10 in Fig. 4(b), which eliminates the need for ACOSD
calculation and thus reduces the execution time.

3.2 GPU Acceleration of Pipe and Menon Iterative Algorithm

As shown in Fig. 3, doGriddingIter subroutine that implements Pipe & Menon
iterative algorithm dominates the execution of M-Step. The execution flow of the
original implementation of this algorithm is shown in the upper part of Fig. 5. In
each iteration, the most time-consuming subroutines are forward and inverse Fast
Fourier Transform (FFT), which are computed on CPUs. Fast Fourier Transform
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1 for idir = 0, rot_angles.size() do
2 if sigma_rot > 0. and sigma_ lt > 0. Then
3 Euler_angles2direc on(prior_rot, prior_ lt, prior_direc on);
4 Euler_angles2direc on(rot_angles[idir], lt_angles[idir],

my_direc on);
5 …
6 diffang = ACOSD( dotProduct(best_direc on, prior_direc on)

)
7 biggest_sigma = XMIPP_MAX(sigma_rot, sigma_ lt)
8 if diffang < sigma_cutoff * biggest_sigma then
9 prior = gaussian1D(diffang, biggest_sigma, 0.)
10 pointer_dir_nonzeroprior.push_back(idir)
11 direc ons_prior.push_back(prior)
12 sumprior += prior
13 end if
14 if (diffang < best_ang)
15 best_ang = diffang
16 best_idir = idir
17 end if
18 end if
19 end for

1 biggest_sigma = XMIPP_MAX(sigma_rot, sigma_tilt)
2 cos_biggest_sigmaxcutoff = cos(biggest_sigma*sigma_cutoff)
3 Euler_angles2direction(prior_rot, prior_tilt, prior_direction);
4 sqrt_sigma = sqrt(2*PI*biggest_sigma*biggest_sigma)
5 if sigma_rot > 0. and sigma_tilt > 0. Then
6 for idir = 0, rot_angles.size() do
7 Euler_angles2direction(rot_angles[idir], tilt_angles[idir],

my_direction);
8 ….
9 diffang = dotProduct(best_direction, prior_direction)
10 if diffang > cos_biggest_sigmaxcutoff then
11 diffang = ACOSD( diffang )
12 prior = 1 / sqrt_sigma*exp(-0.5*((diffang /

biggest_sigma)*(diffang / biggest_sigma)))
13 pointer_dir_nonzeroprior.push_back(idir)
14 directions_prior.push_back(prior)
15 sumprior += prior
16 end if
17 if (diffang > best_ang)
18 best_ang = diffang
19 best_idir = idir
20 end if
21 end for
22 end if

(a) Original Algorithm (b) Op mized Algorithm

Fig. 4. Calculation redundancy optimization of algorithm selectOrientationsWith-
NonZeroPriorProbability.

is a classical problem in scientific computing and there are a few highly optimized
FFT libraries, such as Intel MKL on CPU [17] and Nvidia cuFFT on GPU [8].
In order to exploit the tremendous computation power of GPU on our server, we
choose to replace the original fftw library with cuFFT library for accelerating
the calculation on GPU.

One key to achieve higher performance on GPU is to improve the ratio of
computation to data transfer. Therefore, we port the calculations between FFTs
in each iteration to GPU kernels in order to eliminate data transfers between
CPU and GPU across iterations. The execution flow of our GPU accelerated
algorithm is shown in bottom part of Fig. 5. In our implementation, all calcula-
tions including FFTs are accelerated by GPU. In addition, we find that the FFT
plans are the same in each iteration. Thus, we pre-calculate the plan before the
iteration to eliminate unnecessary computation during the iteration. We put the
plan computation as well as other initializations (e.g., memory allocation) in the
GPU setup stage as shown in bottom part of Fig. 5.

3.3 CPU Binding Optimization

In addition to code optimizations, configuration tuning regarding the architec-
ture features also benefits the performance significantly. RELION-2 automat-
ically identifies GPU resources on the server and allocates MPI processes and
threads to manage the computation between CPU and GPU. However, we notice
that the run-to-run variance of RELION-2 is quite large even using the same con-
figuration and input dataset. Figure 6(c) shows the variance of execution time
across multiple runs. There is almost 300 seconds different between the shortest
and longest runs.
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t
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Fig. 5. Execution flow of original algorithm and GPU optimized algorithm.

Fig. 6. CPU-GPU communication (a) before CPU Binding and (b) after CPU Binding
(c) The variance of execution time across multiple runs.

As we further analyze the cause of the large variance, we find that the threads
launched by the MPI process in RELION-2 are binding to processors randomly
without considering the use of GPU. This leads to interleaved binding between
CPU and GPU as shown in Fig. 6(a). Since there are lots of data communi-
cations between CPU and GPU to exchange calculated results, the interleaved
binding makes the communication performance quite low. The NUMA architec-
ture widely adopted on modern CPU exacerbates the performance penalty due
to interleaved binding with high access latency to the remote memory node [9].

In order to solve this problem, we use numactl to manually bind threads
launched by the MPI process to local CPU processor. Specifically, we bind the
threads to the CPU processor local to the GPU represented by the MPI process.
However, we do not bind the threads to specific cores but the NUMA memory
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Fig. 7. The overall performance speedup of each processing stage.

node for preserving the scheduling flexibility as shown in Fig. 6(b). It is obvious
that the aligned GPU-CPU binding enables higher communication performance
of RELION-2.

4 Evaluation

4.1 Experimental Setup

All the experiments are conducted in our local 2-node cluster. Each node is
equipped with 2× Intel 2680v4 CPUs and 2× Nvidia P100 GPUs. Each node
has 128 GB memory and is connected to each other through FDR Infiniband
network with maximum bandwidth of 25 Gb/s. The software environment is the
same on each node, with CentOS 7 (kernel 3.10.0 x86 64), ICC v2017.6.064,
GCC v4.8.5, MVAPICH2 v2.3, CUDA v9.0 and Intel VTune v2017.5.0 installed.

4.2 Overall Performance Improvement

First, we evaluate the overall performance improvement of RELION-2 after
applying all the optimizations we proposed. Figure 7 shows the overall perfor-
mance speedup of each stage. Each bar group represents the speedup achieved
of the three stages with our optimization applied cumulatively from left to right.
The symmetrice and doGridlter on the X axis represent the algorithm optimiza-
tion (details in Sect. 4.3), and socket fixed, select, with icc and with MPS2 on the
X axis represent the configuration optimization (details in Sect. 4.4). It is clear
that the overall performance improvement is quite significant across all stages,
ranging from 2.63× to 3.17×. The detailed evaluation of each optimization is
provided in the following sections.
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Fig. 8. Execution time and speedup with calculation redundancy optimization.

4.3 Algorithm Optimizations

Algorithm optimization includes the calculation redundancy optimization as well
as the GPU acceleration proposed in Sects. 3.1 and 3.2. As shown in Fig. 8, after
applying the calculation redundancy optimization, the performance of refine3D
achieves significant improvement across representative iterations, with more than
16× speedup in the best case.

Figure 9(a)–(b) shows the performance improvement of class3D and refine3D
stage within M-step across iterations. Both figures demonstrate that after apply-
ing the GPU acceleration, the execution time of the computation reduces signif-
icantly. Especially, in refine3D, the speedup achieved with our optimization is
up to 93×. Whereas in class3D, the performance speedup is more than 18×. The
total execution time of M-step after applying GPU acceleration to refine3D and
class3D is shown in Fig. 9(c), which achieves more than 28× and 11× speedup
respectively.

GPU acceleration of symmetries subroutine also achieves notable speedup as
shown in Fig. 9(d). After optimization, the performance of symmetries subrou-
tine improves by more than 12× and 9× in refine3D and class3D respectively.
Our GPU acceleration of symmetries subroutine effectively mitigates the perfor-
mance bottleneck besides M-step and E-step.

4.4 Configuration Optimizations

Configuration optimization presents the performance results using the CPU
binding optimization proposed in Sect. 3.3 as well as other configuration opti-
mizations such as compiler option (e.g., GCC and ICC) and MPS setup.
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Fig. 9. Execution time and speedup across representative iterations in (a) refine3D (b)
class3D, and total execution time and speedup of (c) M-step (d) Symmetries Function.
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Table 2 shows the performance comparison of original random CPU binding and
our aligned CPU binding with/without applying algorithm optimizations. The
aligned CPU binding achieves extra 13% performance speedup with/without
algorithm optimizations.

Table 2. Execute time of random CPU binding and aligned CPU binding.

Random (s) Aligned (s) Speedup

Without algorithm opt. 4090.56 3622.09 1.13

With algorithm opt. 2934.7 2607.04 1.13

In addition to CPU binding, we also setup MPS with different configurations
such as 2 slaves per GPU and 7 slaves per GPU. The results are shown in
Fig. 10(a), which indicates that the configuration of 2 slaves per GPU is slightly
better. The reason is due to the limited GPU computing resources. Although
MPS can support the concurrent kernel executions, 7 slaves generate too many
kernels for single GPU, which causes long queuing delay waiting for available
GPU resources. Combining the optimal MPS setup and CPU binding, we can
achieve a remarkable performance improvement, with 1.33× speedup compared
to the original RELION-2.

Figure 10(b) present the total speedup of each stage after applying compiler
optimization. It is obvious that all three stages work well with the combination
of ICC compiler and MPS. For refine3D, class3D and class2D, it achieves a total
speedup of 1.27×, 1.6× and 3.21× respectively using the ICC compiler and MPS.

5 Related Work

There are few existing works that attempt to optimize the performance of the
RELION, which can be further divided into two categories based on their aspect
to boost the performance. One aspect to improve the performance of RELION
is to pipeline the entire workflow and perform the analysis work automatically,
which is proposed by Fernandez-Leiro et al. [3]. From the user perspective, the
performance of using the software is greatly improved with this pipelined app-
roach. The second aspect is to optimize the particular steps within the workflow.
Su et al. [15] implements a GPU-enhanced parallel version of single particle cryo-
EM image processing (GeRelion). In their evaluation, GeRelion on 4 or 8 GPU
cards is able to outperform RELION on 256 CPU cores, demonstrating improved
performance and scalability of GeRelion. Furthermore, Dari et al. [7] presents
an implementation of RELION (RELION-2) where GPUs are used to process
the most computationally intensive steps within the workflow to overcome the
bottleneck of limited bandwidth between CPU and GPU. Moreover, RELION-2
is able to dynamically allocate and reduce the memory requirement on GPUs,
and thus make it feasible to even run on cost-effective personal workstations.
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Fig. 10. Performance speedup under different MPS configurations.
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cryoSPARC [12] optimized cyro-EM algorithm by introducing stochastic gradi-
ent descent(SGD) as the ab initio modeling algorithm. As SGD only uses subsets
of large input dataset for estimation, this method can result in large computa-
tion reduction with notable performance speedup. In addition, as it estimates
the ab initio from subsets of input images, it leads to different estimation of ab
initio and final possible resolution of single-particle refinement. This method has
already been merged into the latest version of RELION-2.1 [1].

6 Conclusion and Future Work

The ever increasing demand for cryo-EM structure determination with higher
resolution is driving the performance optimization of RELION-2. This paper
conducts comprehensive performance analysis of RELION-2 and identifies the
bottlenecks for performance optimization. In addition, we propose several opti-
mization strategies for improving the performance of RELION-2, including cal-
culation redundancy optimization, GPU acceleration and CPU binding. Our
experimental results demonstrate that our optimizations can improve the per-
formance of RELION-2 by 3.17× without degrading the resolution. For future
work, we would like to port the entire M-step to GPU in order to fully accel-
erate the computation of RELION-2. In addition, handling large data sets that
can not fit into the GPU memory also poses challenge for further performance
optimization.
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of China (Grant No. 2016YFB1000304) and National Natural Science Foundation of
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Abstract. To improve the performance of the backward fault tolerant scheme
in the long-running parallel application, a general checkpoint-timing method
was proposed to determine the unequal checkpointing interval according to an
arbitrary failure rate, to reduce the total execution time. Firstly, a new model was
introduced to evaluate the mean expected execution time. Secondly, the opti-
mality condition was derived for the constant failure rate according to the cal-
culation model, and the optimal equal checkpointing interval can be obtained
easily. Subsequently, a general method was derived to determine the check-
pointing timing for the other failure rate. The final results shown the proposal is
practical to trade-off the re-processing overhead and the checkpointing overhead
in the backward fault-tolerant scheme.

Keywords: Parallel computation � Fault tolerance � Checkpointing
Failure rate

1 Introduction

Checkpointing schemes are the famous backward fault tolerant techniques for the long-
running parallel computations, such as scientific computing and telecommunication
applications [1]. A saved state of the process is called a checkpoint, to reduce the
number of logs to be replayed during the rollback recovery [2–4]. During failure-free
execution, the time between two consecutive checkpoints is referred to as the check-
point interval [5–8]. The checkpoint interval is one of the major factors influencing the
performance of the fault tolerant scheme [9]. As the checkpoint interval decreases, in
the presence of the failure event, the computation loss decreases. However, excessive
checkpointing operations incur high overhead during the normal failure-free execution
and may result in severe performance degradation. On the contrary, as the checkpoint
interval increases, the overhead for the checkpointing operation during the failure-free
execution decreases. However the computation loss caused by the failure event
increases and deficient checkpointing may incur an expensive rollback recovery
overhead. Therefore, a trade-off must be made to determine a proper checkpoint
interval for high fault tolerant performance [10].

Young et al. introduced a first-order approximation to optimal time interval
between checkpoints to reduce the total waste time [11]. Based on Young’s work, Daly
introduced a method for optimal checkpoint placement from a first order to a higher
order approximation [12]. Ozaki et al. improved the checkpoint placement strategy
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based on min-max placement, the variation calculus approach and the classical Bren-
der’s fixed point algorithm respectively [13]. For the two-level recovery scheme, the
expected total overhead of one unit from one hard checkpoint to another was obtained
using Markov renewal processes and an optimal interval was computed [14]. To
determine appropriate checkpoint sequence, Okamura et al. proposed an online adap-
tive checkpoint algorithm based on the reinforcement learning called Q-learning, and
examined comprehensive evaluation of aperiodic time-based checkpointing and reju-
venation schemes to maximize the steady-state system availability by applying the
dynamic programming [15].

2 The Execution Model

2.1 The Execution Model

Similar to the definitions in [9], checkpoint overhead is the expected overhead caused
by a checkpointing operation and the mean checkpoint overhead is denoted as
C. Checkpoint latency is the expected duration required to save the checkpoint, and the
mean checkpoint latency is denoted as L. In practical implementations, checkpoint
latency is larger than the checkpoint overhead. That means L >= C > 0. Rollback
overhead is the time required to reload the last checkpoint during the rollback recovery
phase and the mean rollback overhead is denoted as R. The failure rate is denoted as
f(t), and the cumulative distribution function (CDF) of the probability density function
is denoted as F(t). The inter-failure time is denoted as Mean Time To Failure (MTTF),
and MTTF¼ R1

0 tdFðtÞ ¼ R1
0 f ðtÞtdt. H(.) is defined as the proportion of the effective

execution time in the progress of the running application [16].
The interval between two consecutive failure events is referred to as a running unit.

As shown in Fig. 1, the running unit begins with the failure event f at time t0, and ends
with the next failure event at t0’ (tn + L > t0’ > tn–1 + L). During the running unit, the
checkpoint Ci is started at time ti (i = 1, 2, 3 …, n–1), and the execution is divided into
a set of intervals {I1, I2,…In} separated by {C1, C 2, C3, … Cn–1}. According to the
symbols introduced above, each checkpointing operation incurs the checkpoint latency
L while the checkpoint overhead is only C (L >= C > 0). For the sake of convenience,
suppose that t0 = 0.

According to the definition of the running unit mentioned above, each unit begins
with the rollback recovery procedure (except the first unit), and finally ends with the
next failure event (except the last unit at the end of the long-running execution). As
illustrated in Fig. 1, the first running unit starts from reloading the latest checkpoint
incurring the rollback overhead R, and then implements the subsequent failure recovery
procedure. After the failure recovery procedure, the application can be recovered to the
state just before the failure point and continues the following normal execution.

2.2 Effective Execution Time

For analysis, one running unit can be decomposed into two parts, including the
essential part and the extra part. The useful computation execution which contributes to
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the progress of the application eventually is referred to as the essential part. The
additional execution which does not contribute to the progress of the application is
referred to as the extra part. The essential and extra parts are both disjoint during the
running unit. For the running unit in Fig. 1, the checkpointing and rollback operations
belong to the extra part since they can’t produce the useful computation execution
which contributes to the progress of the application. During In, the computation prior to
the failure event also belongs to the extra part since it would be wasted after the
subsequent rollback operation.

As shown in Fig. 1, Let S be the total duration of all essential parts in a running
unit, and X be the total duration of all extra parts in the unit. According to the theorem
of the renewal process, the expected effective ratio of the long-running execution H(�)
can be expressed as Eq. (1).

Hð�Þ ¼ EðSÞ
EðX þ SÞ ð1Þ

Specifically, H(�) reflects the average fraction of the time that the system performs
the useful computation which advances the progress of the execution. In practice,
maximizing H(�) is equivalent to the optimality of the fault tolerant performance. For
this reason, H(�) is a convenient metric of the computation efficiency as it has a straight-
forward meaning.

2.3 Derivation

For the running unit shown in Fig. 1, all execution intervals are completed except the
interval In. To derive H(�), let Si be the duration of the essential part in the interval Ii.
The duration of the essential part S1 is t1 + L-C-R, The duration of the essential part Si

R

Failure eventCheckpointing Rollback overhead Recovery

I1 I2 In-1 In

f t0=0 t1 t2 tn-1tn-2

L
R

C1 C2 Cn-2 Cn-1

A Running Unit

t0'

L L

tn-1-tn-2

L

t1+L t2-t1

The Next Running Unit

Fig. 1. The running model
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is (ti + L)–(ti–1 + L)–C (1 < i< n). In the last interval Sn is zero as its computation is
wasted due to the failure event.

If n = 1, no execution interval is successful and the total duration of the essential
part in the running unit is zero. If n > 1, the total duration of the essential part S can be
expressed as Eq. (2).

S ¼
Xn�1

i¼1

Si ¼ tn�1 � ðn� 1ÞCþ L� R ð2Þ

If n = 1, that means the running unit ends prior to the completion of C1. No
execution interval is successful and the total duration of the essential part in the running
unit is zero. As a result, the total duration of all essential parts in a running unit can be
expressed as the following Eq. (3).

S ¼ 0 n ¼ 1
tn�1 � ðn� 1ÞCþ L� R n[ 1

�
ð3Þ

Let F(t) be cumulative distribution function of the inter-failure time with proba-

bility density function f(t). Then we get Fðti þ LÞ ¼ Pðt� ti þ LÞ ¼ Rti þ L

0
dFðtÞ ¼

Rti þ L

0
f ðtÞdt.
Let P(Ii+1) be the probability that the failure event f occurs in the interval Ii+1 (i = 1,

2, 3, …). In other words, P(Ii+1) denotes the probability that the system failure time t is
strictly greater than ti + L on the cumulative operation time, and is equal to or less than

ti+1 + L (i = 1, 2, …). Then we get PðIiþ 1Þ ¼ Pðti þ L\t� tiþ 1 þ LÞ ¼ Rtiþ 1 þL

ti þL
f ðtÞdt.

Due to PðIiþ 1Þ ¼ Fðtiþ 1 þ LÞ � Fðti þ LÞ, the expectation E(S), can be derived
from Eq. (3).

EðSÞ ¼ PðI1Þ � 0þ
X1
i¼2

PðIiÞ � ðti�1 � ði� 1ÞCþ L� RÞð Þ

¼
X1
i¼1

PðIiþ 1Þ � ðti � iCþ L� RÞð Þ ð4Þ

Through the variable substitution of PðIiþ 1Þ, the following Eq. (5) can be derived.

EðSÞ ¼
X1
i¼1

Fðtiþ 1 þ LÞ � Fðti þ LÞð Þ � ðti � iCþ L� RÞð Þ ð5Þ

In practice, the expectation, E(X + S) is equivalent to MTTF as EðX þ SÞ ¼R1
0 tdFðtÞ. With given checkpoint sequence {t1, t2, t3,…tn}, H({t1, t2, t3,…}|F(t)), the
expected effective ratio of the execution, can be expressed as Eq. (6) by combining
Eq. (1) with Eq. (5).
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H ft1; t2; t3; . . .gjFðtÞð Þ¼
P1
i¼1

1� Fðti þ LÞð Þ � ðti � ti�1 � CÞð Þþ ðL� RÞ 1� Fðt1 þ LÞð Þ
R1
0 tdFðtÞ

ð6Þ

To optimize the fault tolerant performance with given failure distribution F(t), the
final objective is to choose the proper checkpoint sequence {t1, t2, t3,…} so as to
maximize the value of H({t1, t2, t3,…}|F(t)).

3 Checkpoint-Timing

3.1 For the Constant Failure Rate

With the constant failure rate r(t) = f(t)/(1–F(t)), the inter-failure time is independently
and identically distributed as standard exponential with F(t) = 1–e−kt (MTTF = 1/k)
and the optimal checkpoint interval is constant. The running unit can be simplified as in
Fig. 2. Specifically, the duration of each execution interval Ii is T + L constantly during
the running unit, as t2–t1 = …tn–tn-1 = T + L and t1 – t0 = T.

For the application following the exponential F(t), let T be the constant checkpoint
period and H(T|F(t)) denote the expected effective ratio of the execution. As a result,
H(T|F(t)) can be derived as Eq. (7) from Eq. (6). The explicit derivation process of
H(T|F(t)) is ignored here.

H T jFðtÞð Þ ¼ k � EðBÞ ¼ ke�kðT þLÞ ðT þ L� CÞ
1� e�kðT þ LÞ � R

� �
ð7Þ

R

I1 I2 In-1 In

f t0=0 t1 t2 tn-1tn-2

L
R

C1 C2 Cn-2 Cn-1

A Running Unit

t0'

L L

T+L

L

T+L T+L

The Next Running Unit

Fig. 2. The running unit with the constant failure rate
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For the exponential F(t), with the constant checkpoint period Topt, the conditional
probability of each interval Ii determined by {ti–1, ti} is constant. This property is called
the constant conditional probability of the interval as

Fðti þ LÞ�Fðti�1 þ LÞ
1�Fðti�1 þ LÞ ¼ FðTopt þLþ ti�1 þLÞ�Fðti�1 þ LÞ

1�Fðti�1 þLÞ
¼ FðTopt þ LÞ ¼ 1� e�kðTopt þLÞ; i ¼ 1; 2; 3. . .ð Þ

ð8Þ

3.2 For the Other Failure Rate

With the varying failure rate r(t) = f(t)/(1–F(t)), the fixed equidistant checkpoint period
is not optimal. In order to determine the maximum of H({t1, t2, t3,…}| F(t)) in Eq. (6),

the following Eq. (9) can be derived by @H ft1;t2;t3;...gjFðtÞð Þ
@ti

¼ 0.

Fðtiþ 1 þ LÞ � Fðti þ LÞ ¼ ðti � ti�1 � CÞf ðti þ LÞ i[ 1
ðt1 þ L� R� CÞf ðt1 þ LÞ i ¼ 1

�
ð9Þ

WithF(t) and thefirst checkpoint timing t1, the checkpoint timing sequence {t2, t3,…}
can be obtained successively according to Eq. (9). Therefore, the appropriate t1 can be
obtained bymaximizingH({t1, t2, t3,…}|F(t)), and the corresponding {t1, t2, t3,…} can be
obtained according to Eq. (9).

For simplification, an appropriate checkpoint sequence {t1, t2, t3,…} during a
running unit can be determined one after another according to Eq. (10) below.

tiþ 1 ¼
F�1 1� e�kðTopt þLÞ� �� L i ¼ 0

F�1 1� Fðti þ LÞð Þ 1� e�kðTopt þ LÞ� �þFðti þ LÞ� �� L i[ ¼ 1

�
ð10Þ

4 Discussions

With the constant failure rate r(t) = f(t)/(1–F(t)), the optimal checkpoint period Topt is
corresponding to the uniquemaximalH(Topt |F(t)) in Eq. (7). Figure 3 isH({t1, t2, t3,…}|
F(t)) when C = 2 s and R = 2 s. Specifically, the z-axis is H({t1, t2, t3,…}|F(t))
corresponding to the running unit, and the y-axis is the constant c and the x-axis is the
constant T.

With the varying failure rate r(t) = f(t)/(1–F(t)), the appropriate checkpoint timing
sequence {t1, t2, t3,…} can be obtained according to CDF, MTTF, Topt and Eq. (10).
According to the condition of optimality Eq. (10), The general checkpoint-timing
algorithm for backward fault-tolerant schemes can be designed easily.

To validate our checkpoint-timing method, FðtÞ ¼ 1� e�
t
að Þb without constant

r(t) is introduced here (a > 0, b >= 1). Figure 4 illustrates the appropriate checkpoint
timing sequence generated according to CDF, MTTF, Topt and Eq. (10) with given
parameters C = 6s, R = 6s, s = 30, L = 10s, and e = 10−6. As shown in Fig. 4, the
failure rate r(t) of F (t) is increasing when b > 1. The appropriate checkpoint interval is
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non-increasing monotonically. The failure rate r(t) is constant when b = 1, the
appropriate checkpoint interval except the first one is equal.

For FðtÞ ¼ 1� e�
t
að Þb with 0 < b <= 1, Fig. 5 illustrates the appropriate check-

point timing sequence generated according to CDF, MTTF, Topt and Eq. (10) with
given parameters C = 6s, R = 6s, s = 30, L = 10s, and e = 10−6. As shown in Fig. 5,
different from b >=1, the value of the checkpoint interval increases monotonically
while 0 < b <= 1.

Fig. 3. Fault tolerant overhead ratio

Fig. 4. The checkpoint timing sequence with b >=1
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5 Conclusion

The checkpoint interval is one of the major factors influencing the performance of the
backward fault tolerant scheme in the long-running parallel application. To trade-off the
checkpointing overhead and the re-processing overhead in the presence of the possible
failure event, a general checkpoint-timing method was proposed to determine the
unequal checkpointing interval according to an arbitrary failure rate, to reduce the
expected execution time. Firstly, a calculation model was introduced to evaluate the
mean expected execution time. Secondly, the optimality condition was derived for the
constant failure rate according to the calculation model, and the optimal equal
checkpointing interval can be obtained easily. Subsequently, a general checkpoint-
timing method was derived to determine the checkpointing timing for the other failure
rate. The final results shown the proposed method is practical to determine an equal or
unequal checkpoint timing sequence for the backward fault-tolerant scheme.
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Abstract. Understanding user behavior is great helpful for assessing HPC
system job scheduling, promoting allocation efficiency and improving user
satisfaction. Current research on user behavior is mainly focused on think time
(i.e. time between two consecutive jobs) of non-commercial supercomputer
systems. In this paper, we present a methodology to characterize workloads of
the commercial supercomputer. We use it to analyze the 2.7 million jobs of
different users in various fields of Tianhe-1A from 2016.01 to 2017.12 and 0.89
million jobs of Sugon 5000A from 2015.09 to 2017.03.
In order to identify the main factors affecting the user’s job submission

behavior on commercial supercomputers, this paper analyzed the correlation
between user’s job submission behavior and various factors such as job char-
acteristics and quota constraint. The result shows that, on the commercial
supercomputer, user s job submission behavior is not obviously affected by the
previous job’s runtime and waiting time. It is affected by the number of pro-
cessors the job uses, the previous job’s status and the size of the total resources
that users can submit jobs. We also find that, there are three job submission
peaks on each day. In the time window of 8 h, 86% jobs of a same user have the
same number of processors and nearly 40% of them have little difference in
runtime.

Keywords: Interval time � Think time � Quota constraint � User behavior

1 Introduction

High Performance Computing (HPC) is a mainstream for performing large-scale sci-
entific computing [1, 2]. How to schedule and allocate resources faster, improve the
resource utilization rate and reduce the average waiting time of a job have always been
the objectives of the researchers. Understanding user behavior is great helpful for
assessing HPC system job scheduling, promoting allocation efficiency and improving
user satisfaction. Current research on user behavior is mainly focused on think time of
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non-commercial supercomputer systems. [3] presented the concept of Think Time,
[4, 5] and other paper analyzed the correlation between Think Time and other factors
such as response time, waiting time, job size, etc.

Supercomputers can be divided into non-commercial and commercial ones depend-
ing on the service model. The current related research focuses on non-commercial
supercomputer systems, and there are also many commercial supercomputer systems.
For example, there are six national supercomputing centers in China, including Tianjin,
Shenzhen, Jinan, Changsha, Wuxi and Guangzhou. The six supercomputing centers
own TaihuLight, Tianhe-2, Tianhe-1A and other world-class supercomputers. Users
need to pay for the computing, and they usually use resources in accordance with the
contract. The contract mainly limits the size of the total resources that users can submit
jobs, which is the quota constraint. At the same time, there are more challenges to
improve user satisfaction on the commercial supercomputers because of the commer-
cial service model. It is important to understand the user’s behavior of job submission
in order to optimize job scheduling strategy and improve user satisfaction.

In this paper, we presented a methodology to characterize workloads on the
commercial supercomputer, and the details for characterizing think time and interval
time. We used it to analyze the 2.7 million jobs of different users in various fields of
Tianhe-1A from 2016.01 to 2017.12 and 0.89 million jobs of Sugon 5000A from
2015.09 to 2017.03.

The main contributions of this paper include (1) presenting a methodology to
characterize workloads on the commercial supercomputer; (2) using it to analyze the
data based on 2.7 million jobs of Tianhe-1A and 0.89 million jobs of Sugon 5000A;
(3) analyzing the correlation between interval time (IT), think time (TT) and alloc cpus
(the number of processers the job uses), core time (total CPU time of the job), job status
and group cpus (the user’s quota constraint) to identify the main factors affecting the
user’s job submission behavior on commercial supercomputers; (4) analyzing the
weekly pattern of the user’s job submission behavior and the similarities of the suc-
cessively submitted jobs.

2 Background and Related Work

Currently, there are some research focuses on workload characterizations, [6] presented
the history of HPC system development and applications in China, HPC centers and
facilities, and major research institutions, but it’s before 2010. [7, 8] analyzed the
system features of three supercomputers (Hopper, Edison, and Carver). [9] analyzed the
I/O features of 6 years of applications on three supercomputers, Intrepid, Mira, and
Edison. These papers present a detailed analysis of system performance, but none of
them have focused on the user behavior.

[11] suggested that sessions of think time be identified based on proven user
activity, namely the submittal of new jobs, regardless of how long they run. [10]
presented the Questionnaire for User Habits of Computer Clusters (QUHCC) and gave
them to a group of 23 distinct users of two different computer clusters hosted at TU
Dortmund University. They analyzed the results to find factors that affect the user’s
behavior of using supercomputers. In fact, the sample of that paper is relatively small.
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[4] analyzed the correlation between think time and runtime, waiting time. [5] further
analyzed the relationship between think time and runtime, waiting time, slowdown and
job size based on the data of the Mira supercomputer for one year was analyzed. It was
considered that the user behavior was greatly affected by the waiting time. [12]
extended the calculation of the think time to the HTC type application.

But the current research on user behavior is mainly focused on think time of non-
commercial supercomputer systems,and they all think that think time is a key factor
that reflects the user’s job submission behavior.

3 Methodology

In this section, we present the system and workloads in focus for our investigation and
elaborate on the key parameters studied.

3.1 Data Source

The analyses presented here are based on the 2.7 million jobs of different users in
various fields from Tianhe-1A (TH-1A) supercomputer at the National Supercomputer
Center in Tianjin since 2016 to 2017 and 0.89 million jobs from Sugon 5000A (Sugon-
5000A) at the Shanghai Supercomputer Center [13]. The information of jobs in Tianhe-
1A is from the SLURM [14] workload manager logs. And the information of jobs in
Sugon 5000A is from Chinese Supercomputers Workloads Archive (CSWA) [15].
Currently, the Standard Workloads Format (SWF), which is defined by Parallel
Workloads Archive [16].

Table 1 shows the summary of the main characteristics of the dataset. The jobs in
Tianhe-1A, which consist of 1362091 jobs submitted by 733 users (2016) and 1329123
jobs submitted by 714 users (2017) from 5 science fields such as Basic Science,
Biological, Material Science, Meteorological Science, Aerospace, and Other fields. In
total, these jobs consumed over 892.98 million CPU hours. The jobs data in Sugon
5000A includes 869160 jobs submitted by 271 users and consumed over 100.31
million CPU hours, and the Standard Workloads Format does not have information
about application areas.

Table 1. Jobs in the Tianhe-1A (2016.01-2017.12) and Sugon 5000A (2015.9-2017.3)

Science Field #Users #Jobs CPU hours
(millions)

#TT Jobs #IT Jobs

2017 2016 2017 2016 2017 2016 2017 2016 2017 2016

Basic Science 251 176 300228 250831 148.87 112.87 64078 50926 229677 196350

Biological 20 30 70487 153769 32.33 55.58 5807 5583 22590 39025

Material Science 230 256 692110 633059 152.68 146.59 120838 90629 531529 447085

Meteorological
Science

97 97 172960 182065 41.1 57.33 53149 76064 139944 164573

Aerospace 21 22 27567 22030 33.22 26.07 8657 7086 24599 18935

Other 95 152 65771 120337 32.02 54.32 20299 29472 53887 95376

TH-1A 714 733 1329123 1362091 440.22 452.76 272828 259760 1002226 961344

Sugon 5000A 271 869160 100.31 99887 515013

*number of subsequent jobs with positive think time: 0 < TT < 8 h, and Interval time: 0 < IT < 8 h.
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Although the number of users and jobs are different, Fig. 1 shows that the five
science fields have a basic monthly job submission from 2016 to 2017 and the change
of jobs submission percentage is small, and it is able to reflect the overall situation of
actual users submitting jobs on commercial supercomputer systems.

3.2 Systems Description

Tianhe-1A is the world’s top 1 supercomputer in 2010 at the National Supercomputer
Center in Tianjin. It has been in service since 2011 and has been in operation for more
than seven years. It is a typical representative of commercial supercomputer. Tianhe-
1A supercomputer consists of 7168 computing nodes (12 cores, 24 GB memory per
node) with a peak performance 4.7 PFlops.

Sugon 5000A supercomputer consists of 416 computing nodes (24 cores, 128 GB
memory per node) with a peak performance 0.4 PFlops.

(a) The jobs submission percentage in Tianhe-1A from Jan. to Dec 2016

(b) The jobs submission percentage from Jan. to Dec 2017
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Fig. 1. The Monthly characteristics of job submission in Tianhe-1A from 2016 to 2017
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3.3 Characterizing the Think Time and Interval Time

When using the commercial supercomputer, users need to pay for the computing, and
they usually use resources in accordance with the contract. The contract mainly limits
the size of the total resources that users can submit jobs, which is the quota constraint.

For example, if the user can submit k jobs, each job occupies the resource Nj, and
the user’s quota constraint is M, thus

Pk
j¼1 Nj �M. In the SLURM system, it is named

Group cpus of the user.
Figure 2 describes the process of submitting a job under the quota constraint

environment. After the user submits the job, the workload manager first performs quota
check. If the sum of user’s resource has not exceeded the quota, it proceeds to the next
step for resource check. Otherwise, the job needs to wait.

The job has Submit time (tsub), Start time (tstr) and End time (tend). The runtime
of jobj is the timespan between End time and Start time (tend - tstr); the waiting time of
jobj (Wj) is the timespan between Start time and Submit time (tstr - tsub); the response
time of jobj (Rj) is the timespan between End time and Submit time (tend - tsub); And the
core time is defined as the total CPU time of the job.

Alloc cpus is the number of processors the job uses. Job Status is the job end
status with in {failed, completed, cancelled}.

If a user has a quota constraint (size of cpus), the waiting time consists of two
parts: waiting time caused by quota-constrained and resource-constrained

Wj ¼ Wqj þWrj: ð1Þ

Think Time (TT): the termination of this job and the submittal of the next job by
the same user.

Interval Time (IT): the timespan between the submission time of two sequential
jobs by the same user.

If the submit time of jobj+1 early than the end time of jobj, TT(j, j + 1) < 0. It
means the two subsequent jobs are overlapped. In this paper we only consider sub-
sequent job submissions of positive think time, and less than eight hours, which is
intended to represent subsequent job submissions belonging to the same working day
like [5]. At the same time, in the data of this paper, jobs with 0 < TT < 8 h exceed 85%
of all jobs with TT > 0 (90% on the Tianhe-1A, 85% on the Sugon 5000A). Table 1
shows the number of subsequent jobs with positive think times. We can see that there
are a large number of jobs with negative think time, and the number of jobs that satisfy
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Time/Event 
Trigger

Time/Event 
Trigger

Fig. 2. The step from job submit to job start on a quota-constrained supercomputer
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the requirement (TT > 0) accounted for only about 22% on TH-1A and 13% on Sugon
5000A. About 80% of the user’s jobs did not wait for the previous job to be
submitted, so that think time may not be the best representative of all users’ job
submission behavior.

Table 1 also shows the number of subsequent jobs (0 < IT < 8 h). In the Tianhe-
1A system, the number of qualifying jobs exceeds 70%, and also more than 59% in the
Sugon 5000A. Interval time is also helpful for understanding user’s job submission
behavior.

From Fig. 3 we can see that if the submit time of jobj+1 is later than the end time of
jobj, the TT is contained by the IT. If the submit time of jobj+2 is earlier than the end
time of jobj+1, TT will be negative.

4 Analyze the Characteristics of User’s Job Submission
Behavior

4.1 Analysis of Job Characteristics in Terms of Runtime and Waiting
Time

The analysis of think time behavior is often limited to the study of the impact of
response time on user behavior. [5] pointed out that, at the non-commercial super-
computer Mira, the think time of jobs follow linear trend with response time, runtime
and waiting time. And jobs in different fields show similar characteristics.

Figure 4 shows how these components correlate with users’ think times. From this
we can see that the correlation between think time and response time, runtime, waiting
time is not obvious on commercial supercomputers. Figure 4(a) shows that when the
response time is small (<2100 s), TT will increase with the increase of response time.
Subsequently, with the increase of response time, there is no obvious upward trend in
TT. Figure 4(b) shows a phenomenon similar to (a).

Figure 4(c) shows that on a commercial supercomputer system, the TT does not
change significantly as the waiting time changes, which is quite different from the
phenomenon on a non-commercial supercomputer.

Submit Time

Job j

Jobj+1

Jobj+2

TT(j,j+1)>0

Start Time End Time

IT(j,j+1)

IT(j+1,j+2)

TT(j+1,j+2)<0

Fig. 3. Schematic of Think Time and Interval Time
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In order to better understand the user’s job submission behavior, we also analyzed
the correlation of IT and response time, runtime, and waiting time. The results show
that the trend of IT with three parameters is similar to that of TT.

This phenomenon may be due to the fact that on commercial supercomputers, users
clearly know that they have quota restrictions and tend to submit jobs more frequently.
Therefore, the runtime of the previous job has no obvious effect on the user submitting
the next job. IT and TT are basically irrelevant to the waiting time because on the
commercial supercomputer system, the waiting time consists of two parts, waiting time
caused by quota-constrained and resource-constrained. With the increase of waiting
time, quota-constrained waiting time increases rapidly and nearly linearly, and takes up
the main proportion of waiting time. The user is aware of this, so the waiting time does
not significantly affect the behavior of the user submitting the job.
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4.2 Analyze the Correlation Between IT, TT and Alloc Cpus, Core Time,
Job Status, and Group Cpus

This paper analyzes the correlation between IT, TT and alloc cpus (the number of using
the job uses), core time (total CPU time of the job), job status and group cpus (the
User’s quota constraint) to identify the main factors affecting the user’s job submission
behavior on commercial supercomputers

Figure 5(a) shows that, user behavior seems to be impacted by the alloc cpus. The
median IT is 69 s for small jobs and 338 s for large in 2017, and 89 s for small jobs
and 352 s for large in 2016. Figure 5(b) shows that, the correlation between TT and
alloc cpus is different from 2016 to 2017. The median TT is 156 s for small jobs and
263 s for large in 2017, and 133 s for small jobs and 130 s for large jobs 2016. This
shows that the alloc cpus has no clear effect on TT, but it does significantly affect IT.
With larger jobs, users need to spend more time preparing for the next job.

Figure 6(a) and (b) shows that, user behavior seems to be impacted by the Job
Status. If the previous job failed, the user needs to spend more time adjusting and
prepare to submit the next job. The median IT is 119 s for failed jobs, and for com-
pleted jobs 54 s in 2017. And the median TT is 295 s for failed jobs, and for completed
jobs 162 s in 2016.
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Fig. 5. The correlation between IT, TT and alloc cpus in Tianhe-1A
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Figure 7(a) and (b) shows that, user behavior seems to be impacted by the core
time. We divided the jobs into two categories according to the size of the core time. For
the jobs (core time > 105) the IT and TT will increase significantly.

Figure 8(a) and (b) shows that, the correlation between IT, TT and group cpus is
inconsistent. IT and groups cpus are negatively correlated. That is, the more resources a
user can use, the more jobs he can submit, resulting in a smaller IT value. And this is
easier to understand. But from Fig. 8(b) we can see a paradoxical phenomenon. The
results of the 2016 and 2017 data show an opposite correlation. The median TT is
105 s for small Group cpus, and for large 190 s in 2017.

Users with more resources have to spend more time preparing for jobs, which
seems do not make sense. So we think that on commercial supercomputers, think time
may not fully characterize user’s job submission behavior.
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4.3 Other Pattern of User’s Job Submission Behavior on Commercial
Supercomputer

Based on the data on Tianhe-1A, this paper further analyzes the weekly pattern of the
user’s job submission behavior and the similarities of the successively submitted jobs,
which are helpful for job prediction and scheduling optimization.

Figure 9 shows that from Monday to Sunday, there are three peaks for the number
of jobs submitted daily, which are 10–12 AM, 15–17 pm, and 21–23 pm. Moreover,
users on Tianhe-1A have the habit of submitting jobs at night so that the results can be
seen in the next working day. Since Saturday and Sunday are non-working days, the
number of jobs submitted is less than that of the working day. There was a peak in the
early morning of Wednesday, 2016, because a batch of jobs was submitted at 1–3 a.m.

Sun Mon Tues Wed Thur Fri Sat0

0.5

1

1.5

2 x 104

Time (hours)

Jo
b 

Co
un

t

2017
2016

Fig. 9. User’s job submission behavior weekly in Tianhe-1A
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Figure 10 shows the similarity of successively submitted jobs, including alloc cpus
and runtime. We can see that if the user’s successively submitted jobs interval don’t not
exceed 8 h, over 86% of job’s alloc cpus are the same. Therefore, we can research and
predict the overall follow-up resource requirements based on the current resource usage
and the pattern of the user’s Job submission behavior. Figure 10 also shows that nearly
40% of the user’s successively submitted jobs whose interval don’t exceed 8 h had
little difference of runtime (±30%), and more than 26% of jobs had very close runtime
(±10%). These data can be combined with the job characteristics to further improve the
accuracy of job execution time forecasting and thus optimize the scheduling system.

5 Summary and Discussion

Understand the user’s job submission behavior, is helpful for job prediction, resource
scheduling. The researchers used the think time as a key parameter reflecting the user’s
job submission behavior, and the research focused on non-commercial supercomputers.

In this paper, we first give the details about the methodology for characterizing
think time and interval time, including the process for submitting jobs on the com-
mercial supercomputer, data source, system description, definition and calculation of
various variables, especially the quota-constrained waiting time. And use it to analyze
2.7 million jobs of different users in various fields in the Tianhe-1A from 2016.01 to
2017.12 and 0.89 million jobs in the Sugon 5000A for 2015.09 to 2017.03.

From the analysis results, the users’ job submission behavior is different on the
commercial supercomputer and non-commercial supercomputing. On commercial
supercomputers such as Tianhe-1A and Sugon 5000A, the interval time of job sub-
mission is not obvious affected by the previous job’s runtime and waiting time. because
on the commercial supercomputer system, the waiting time consists of two parts:
waiting time caused by quota-constrained and resource-constrained, with the increase
of waiting time, quota-constrained waiting time in-creases rapidly and nearly linearly,
and takes up the main proportion of waiting time. The user is aware of this, so the
waiting time does not significantly affect the behavior of the user submitting the job.

This paper analyzes the correlation between IT, TT and alloc cpus (the number of
using the job uses), core time (total CPU time of the job), Job Status and Group cpus
(the User’s quota constraint) to identify the main factors affecting the user’s job sub-
mission behavior on commercial supercomputers. If the jobs need more resources, or
the previous jobs run failed, users need more time to prepare for subsequent jobs. The
larger the users’ quota constraints, the shorter the time interval for users to submit jobs.
However, it is necessary to emphasize that the conclusions drawn from the correlation
between TT, IT and group cpus are inconsistent, we thinks that on commercial
supercomputers, think time may not fully characterize user’s job submission behavior.

We also analyze the weekly pattern of the user’s job submission behavior and the
similarities of the successively submitted jobs. The result shows that there are three
peaks for the number of jobs submitted daily and if the user’s successively submitted
jobs interval don’t not exceed 8 h, over 86% of job’s alloc cpus is the same and nearly
40% have little difference of runtime.
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Of course, the analysis of this article has some limitations, such as this study is
mainly focused on HPC applications, and in fact TH-1A system also has a large
number of HTC users, their user behavior and the results of those analysises may be
different; the 8-hours limit may be a bit simple, the actual job submission is also subject
to time and space constraints, for example, some users are accustomed to submit jobs at
21–23 pm, in order to see the results at next day and modify the job plan, the time
interval may exceed 8 h. And in fact one system user may be shared by multiple people
in a laboratory which is difficult to distinguish through the system data. Therefore, this
paper treats one system ID as one user. Future research can be further combined with
application characteristics to provide more optimization recommendations for job
scheduling, this will make the research of this article more meaningful.

6 Conclusion

In this paper, we first give the details about the methodology for characterizing think
time and interval time and use it to analyze the 2.7 million jobs of different users in
various fields of Tianhe-1A from 2016.01 to 2017.12 and 0.89 million jobs of Sugon
5000A from 2015.09 to 2017.03.

(1) The users’ job submission behavior of commercial supercomputers is different
from non-commercial supercomputers. The interval of job submission is not
obviously affected by the previous job’s runtime and waiting time.

(2) This paper analyzes the correlation between interval time, think time and alloc
cpus, core time, job status and group cpus. If the jobs need more resources, or its
previous job failed, users need more time to prepare for subsequent jobs. The
larger the users’ quota constraints, the shorter the time interval for users to submit
jobs. However, it is necessary to emphasize that the conclusions drawn from the
correlation between think time, interval time and group cpus are inconsistent, we
thinks that on commercial supercomputers, think time may not fully characterize
user’s job submission behavior.

(3) We also analyze the weekly pattern of the user’s job submission behavior and the
similarities of the successively submitted jobs. The result shows that there are
three peaks for the number of jobs submitted daily and if the user’s successively
submitted jobs interval don’t not exceed 8 h, over 86% of job’s alloc cpus is the
same and nearly 40% have little difference of runtime.
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